@unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir E. and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {On the homotopy classification of elliptic operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26769}, year = {2004}, abstract = {We obtain a stable homotopy classification of elliptic operators on manifolds with edges.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir E. and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25582}, year = {1999}, abstract = {In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.}, language = {en} } @unpublished{NazaikinskiiSternin1999, author = {Nazaikinskii, Vladimir E. and Sternin, Boris}, title = {Surgery and the relative index in elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25538}, year = {1999}, abstract = {We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26595}, year = {2003}, abstract = {Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah-Patodi-Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose's Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah-Patodi-Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587}, year = {2003}, abstract = {Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. H{\"o}rmander's definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah-Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 6: Elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26757}, year = {2004}, abstract = {Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26500}, year = {2003}, abstract = {For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 1: Localization (surgery) in elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26546}, year = {2003}, abstract = {Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß-Wojciechowski theorem 1.2.2. The Gromov-Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich-Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski's theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah-Bott-Lefschetz theorem}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : I. The index of families of cone-degenerate operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26327}, year = {2002}, abstract = {We study the index problem for families of elliptic operators on manifolds with conical singularities. The relative index theorem concerning changes of the weight line is obtained. AN index theorem for families whose conormal symbols satisfy some symmetry conditions is derived.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26386}, year = {2002}, abstract = {When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.}, language = {en} }