@article{ShkilnyySchoeneRumplaschetal.2011, author = {Shkilnyy, Andriy and Sch{\"o}ne, Stefanie and Rumplasch, Claudia and Uhlmann, Annett and Hedderich, Annett and G{\"u}nter, Christina and Taubert, Andreas}, title = {Calcium phosphate mineralization with linear poly(ethylene imine) a time-resolved study}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2403-2}, pages = {881 -- 888}, year = {2011}, abstract = {We have earlier shown that linear poly(ethylene imine) (LPEI) is an efficient growth modifier for calcium phosphate mineralization from aqueous solution (Shkilnyy et al., Langmuir, 2008, 24 (5), 2102). The current study addresses the growth process and the reason why LPEI is such an effective additive. To that end, the solution pH and the calcium and phosphate concentrations were monitored vs. reaction time using potentiometric, complexometric, and photometric methods. The phase transformations in the precipitates and particle morphogenesis were analyzed by X-ray diffraction and transmission electron microscopy, respectively. All measurements reveal steep decreases of the pH, calcium, and phosphate concentrations along with a rapid precipitation of brushite nanoparticles early on in the reaction. Brushite transforms into hydroxyapatite (HAP) within the first 2 h, which is much faster than what is reported, for example, for calcium phosphate precipitated with poly(acrylic acid). We propose that poly(ethylene imine) acts as a proton acceptor (weak buffer), which accelerates the transformation from brushite to HAP by taking up the protons that are released from the calcium phosphate precipitate during the phase transformation.}, language = {en} } @article{ShkilnyyGraefHiebletal.2009, author = {Shkilnyy, Andriy and Gr{\"a}f, Ralph and Hiebl, Bernhard and Neffe, Axel T. and Friedrich, Alwin and Hartmann, Juergen and Taubert, Andreas}, title = {Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites}, issn = {1616-5187}, doi = {10.1002/mabi.200800266}, year = {2009}, abstract = {Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications.}, language = {en} } @article{GrafMantionFoelskeetal.2009, author = {Graf, Philipp and Mantion, Alexandre and Foelske, Annette and Shkilnyy, Andriy and Ma{\"U}ic, Admir and Thuenemann, Andreas F. and Taubert, Andreas}, title = {Peptide-coated silver nanoparticles : synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies}, issn = {0947-6539}, doi = {10.1002/chem.200802329}, year = {2009}, abstract = {Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-con trolled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide oil the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder Xray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation call be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed.}, language = {en} } @article{NavarroShkilnyyTierschetal.2009, author = {Navarro, Salvador and Shkilnyy, Andriy and Tiersch, Brigitte and Taubert, Andreas and Menzel, Henning}, title = {Preparation, characterization, and thermal gelation of amphiphilic alkyl-poly(ethyleneimine)}, issn = {0743-7463}, doi = {10.1021/La9013569}, year = {2009}, abstract = {Amphiphilic alkyl-poly(ethyleneimine)s (alkyl-PEI) with different degrees of polymerization have been produced by alkaline hydrolysis of alkyl-poly(2-methyl-2-oxazoline). Potentiometric titration of the alkyl-PEI shows the influence of the alkyl chain and the degree of polymerization on the titration curves and hence on the polymer conformation. Karl Fischer titration has been used to determine the water content in the polymers. Subsequent X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) measurements prove the existence of different hydration states of the PEI even under dry storage conditions. Upon cooling from hot aqueous Solutions, hydrogels form. The gelation concentration decreases with increasing degree of polymerization of the PEI segment. Scanning electron microscopy (SEM and cryo-SEM) of the hydrogels reveal an alkyl-PEI fibrous network composed of fan-like units. DSC shows that the percentages of bound and free water in the hydrogels depend on the concentration of polar amino groups.}, language = {en} } @article{ShkilnyyBrandtMantionetal.2009, author = {Shkilnyy, Andriy and Brandt, Jessica and Mantion, Alexandre and Paris, Oskar and Schlaad, Helmut and Taubert, Andreas}, title = {Calcium phosphate with a channel-like morphology by polymer templating}, issn = {0897-4756}, doi = {10.1021/Cm803244z}, year = {2009}, abstract = {Calcium phosphate mineralization from aqueous solution in the presence of organic growth modifiers has been intensely studied in the recent past. This is mostly due to potential applications of the resulting composites in the biomaterials field. Polymers in particular are efficient growth modifiers. As a result, there has been a large amount of work on polymeric growth modifiers. Interestingly, however, relatively little work has been done on polycationic additives. The current paper shows that poly(ethylene oxide)b-poly(L-lysine) block copolymers lead to an interesting morphology of calcium phosphate precipitated at room temperature and subjected to a mild heat treatment at 85 degrees C. Electron microscopy, synchrotron X-ray diffraction, and porosity analysis show that a (somewhat) porous material with channel-like features forms. Closer inspection using transmission electron microscopy shows that the channels are probably not real channels. Much rather the morphology is the result of the aggregation of ca. 100-nm-sized rodlike primary particles, which changes upon drying to exhibit the observed channel-like features. Comparison experiments conducted in the absence of polymer and with poly(ethylene oxide)-b-poly(L-glutamate) show that these features only form in the presence of the polycationic poly(L-lysine) block, suggesting a distinct interaction of the polycation with either the crystal or the phosphate ions prior to mineralization.}, language = {en} } @article{CasseShkilnyyLindersetal.2012, author = {Casse, Olivier and Shkilnyy, Andriy and Linders, J{\"u}rgen and Mayer, Christian and H{\"a}ussinger, Daniel and V{\"o}lkel, Antje and Th{\"u}nemann, Andreas F. and Dimova, Rumiana and C{\"o}lfen, Helmut and Meier, Wolfgang P. and Schlaad, Helmut and Taubert, Andreas}, title = {Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300621g}, pages = {4772 -- 4777}, year = {2012}, abstract = {The self-assembly of double-hydrophilic poly(ethylene oxide)-poly(2-methyl-2-oxazoline) diblock copolymers in water has been studied. Isothermal titration calorimetry, small-angle X-ray scattering, and analytical ultracentrifugation suggest that only single polymer chains are present in solution. In contrast, light scattering and transmission electron microscopy detect aggregates with radii of ca. 100 nm. Pulsed field gradient NMR spectroscopy confirms the presence of aggregates, although only 2\% of the polymer chains undergo aggregation. Water uptake experiments indicate differences in the hydrophilicity of the two blocks, which is believed to be the origin of the unexpected aggregation behavior (in accordance with an earlier study by Ke et al. [Macromolecules 2009, 42, 5339-5344]). The data therefore suggest that even in double-hydrophilic block copolymers, differences in hydrophilicity are sufficient to drive polymer aggregation, a phenomenon that has largely been overlooked or ignored so far.}, language = {en} } @article{PrietoShkilnyyRumplaschetal.2011, author = {Prieto, Susana and Shkilnyy, Andriy and Rumplasch, Claudia and Ribeiro, Artur and Javier Arias, F. and Carlos Rodriguez-Cabello, Jose and Taubert, Andreas}, title = {Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm200287c}, pages = {1480 -- 1486}, year = {2011}, abstract = {Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein. Via genetic engineering, the basic elastin sequence was modified with the SN(A)15 domain of statherin, whose interaction with calcium phosphate is well-established. These new materials retain the biocompatibility, "smart" nature, and desired mechanical behavior of the elastin-like recombinamer (ELR) family. Mineralization in simulated body fluid (SBF) in the presence of these recombinamers reveals surprising differences. Two of the polymers inhibit calcium phosphate deposition (although they contain the statherin segment). In contrast, the third polymer, which has a triblock structure, efficiently controls the calcium phosphate formation, yielding spherical hydroxyapatite (HAP) nanoparticles with diameters from 1 to 3 nm after 1 week in SBF at 37 degrees C. However, at lower temperatures, no precipitation is observed with any of the polymers. The data thus suggest that the molecular design of ELRs containing statherin segments and the selection of an appropriate polymer structure are key parameters to obtain functional materials for the development of intelligent systems for hard tissue engineering and subsequent in vivo applications.}, language = {en} }