@article{SchwagerJohstJeltsch2006, author = {Schwager, Monika and Johst, Karin and Jeltsch, Florian}, title = {Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions}, year = {2006}, abstract = {Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations ( red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated ( white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme ( catastrophic) events can occur ( strong noise) or sensitivity is high ( overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk}, language = {en} } @article{WichmannJohstSchwageretal.2005, author = {Wichmann, Matthias and Johst, Karin and Schwager, Monika and Jeltsch, Florian and Blasius, Bernd}, title = {Extinction risk, coloured noise and the scaling of variance}, year = {2005}, abstract = {The impact of temporally correlated fluctuating environments (coloured noise) on the extinction risk of populations has become a main focus in theoretical population ecology. In this study we particularly focus on the extinction risk in strongly autocorrelated environments. Here, in contrast to moderate autocorrelation, we found the extinction risk to be highly dependent on the process of noise generation, in particular on the method of variance scaling. Such variance scaling is commonly applied to avoid variance-driven biases when comparing the extinction risk for white and coloured noise. In this study we found an often-used scaling technique to lead to high variability in the resulting variances of different time series for strong auto-correlation eventually leading to deviations in the projected extinction risk. Therefore, we present an alternative method that always delivers the target variance, even in the case of strong temporal correlation. Furthermore, in contrast to the earlier method, our very intuitive method is not bound to auto-regressive processes but can be applied to all types of coloured noises. We recommend the method introduced here to be used when the target of interest is the effect of noise colour on extinction risk not obscured by any variance effects.}, language = {en} } @article{SchwagerCovasBlaumetal.2008, author = {Schwager, Monika and Covas, Rita and Blaum, Niels and Jeltsch, Florian}, title = {Limitations of population models in predicting climate change effects : a simulation study of sociable weavers in southern Africa}, issn = {0030-1299}, doi = {10.1111/j.0030-1299.2008.16464.x}, year = {2008}, language = {en} } @article{BlaumSeymourRossmanithetal.2009, author = {Blaum, Niels and Seymour, Colleen and Rossmanith, Eva and Schwager, Monika and Jeltsch, Florian}, title = {Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands : identifcation of suitable indicators}, issn = {0960-3115}, doi = {10.1007/s10531-008-9498-x}, year = {2009}, abstract = {Shrub encroachment linked to heavy grazing has dramatically changed savanna landscapes, and is a major form of rangeland degradation. Our understanding of how shrub encroachment affects arthropod communities is poor, however. Here, we investigate the effects of shrub encroachment on abundance and diversity of ground-dwelling (wingless) arthropods at varying levels of shrub cover in the southern Kalahari. We also ascertain if invertebrate assemblage composition changes with habitat structure and identify which aspects of habitat structure (e.g., grass cover, herbaceous plant cover, shrub density) correlate most strongly with these changes. Ant, scorpion and dung beetle abundance increased with shrub cover, whereas grasshoppers and solifuges declined. Spider and beetle abundance exhibited hump-shaped relationships with shrub cover. RTU richness within orders either mirrored abundances, or exhibited no trend. Shrub density was the habitat component most correlated with similarities between invertebrate assemblages. Ground-dwelling arthropods showed clear shifts in species assemblage composition at a similarity level of 65\% according to shrub density. Changes in indicator species showed that within the Tenebrionidae (darkling beetles), certain species respond positively to shrub thickening, replacing other species within the Family. Small-bodied, wingless Scarabaeidae (dung beetles) tended to increase with increased shrub density and three species emerged as significant indicators of more thickened habitats, although this might be a response to greater dung availability, rather than habitat structure itself. We conclude that because ground- dwelling invertebrates showed such clear responses in species assemblage composition, they present excellent candidates for use as indicator species in further studies into bush encroachment.}, language = {en} } @article{JeltschMoloneySchurretal.2008, author = {Jeltsch, Florian and Moloney, Kirk A. and Schurr, Frank Martin and K{\"o}chy, Martin and Schwager, Monika}, title = {The state of plant population modelling in light of environmental change}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.11.004}, year = {2008}, abstract = {Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a 'science of forecasting'.}, language = {en} } @article{JeltschMoloneySchwageretal.2011, author = {Jeltsch, Florian and Moloney, Kirk A. and Schwager, Monika and K{\"o}rner, Katrin and Blaum, Niels}, title = {Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {145}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2010.12.019}, pages = {49 -- 58}, year = {2011}, abstract = {While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level. The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.}, language = {en} } @article{BlaumSchwagerWichmannetal.2012, author = {Blaum, Niels and Schwager, Monika and Wichmann, Matthias C. and Rossmanith, Eva}, title = {Climate induced changes in matrix suitability explain gene flow in a fragmented landscape - the effect of interannual rainfall variability}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2011.07154.x}, pages = {650 -- 660}, year = {2012}, abstract = {In fragmented landscapes, the survival of species and the maintenance of populations with healthy genetic structures will largely depend on movement/dispersal of organisms across matrix areas. In this article, we highlight that effects of fragmentation and climate change occur simultaneously and may enhance or mitigate each other. We systematically analyzed the effect of increasing interannual variation in rainfall on the genetic structure of two neighbouring small mammal subpopulations in a fragmented savanna landscape. The effect of interannual rainfall variation is analyzed for two contrasting scenarios that differ in mean annual rainfall and are both close to a dispersal threshold. Scenario 1 (low mean annual rainfall) lies slightly below this threshold and scenario 2 (high mean annual rainfall) slightly above, i.e. the amount of rainfall in an average rainfall year prevents dispersal in scenario 1, but promotes gene flow in scenario 2. We show that the temporal dynamics of the matrix was crucial for gene flow and the genetic structure of the neighbouring small mammal subpopulations. The most important result is that the increase in rainfall variability could both increase and decrease the genetic difference between the subpopulations in a complex pattern, depending on the scenario and on the amount of variation in rainfall. Finally, we discuss that the relevance of the matrix as temporarily suitable habitat may become a key aspect for biodiversity conservation. We conclude to incorporate temporal changes in matrix suitability in metapopulation theory since local extinctions, gene flow and re-colonization are likely to be affected in fragmented landscapes with such dynamic matrix areas.}, language = {en} } @article{JeltschTewsBroseetal.2004, author = {Jeltsch, Florian and Tews, J{\"o}rg and Brose, Ulrich and Grimm, Volker and Tielb{\"o}rger, Katja and Wichmann, Matthias and Schwager, Monika}, title = {Animal species diversity driven by habitat heterogeneity/diversity : the importance of keystone structures}, year = {2004}, abstract = {In a selected literature survey we reviewed studies on the habitat heterogeneity-animal species diversity relationship and evaluated whether there are uncertainties and biases in its empirical support. We reviewed 85 publications for the period 1960-2003. We screened each publication for terms that were used to define habitat heterogeneity, the animal species group and ecosystem studied, the definition of the structural variable, the measurement of vegetation structure and the temporal and spatial scale of the study. The majority of studies found a positive correlation between habitat heterogeneity/diversity and animal species diversity. However, empirical support for this relationship is drastically biased towards studies of vertebrates and habitats under anthropogenic influence. In this paper we show that ecological effects of habitat heterogeneity may vary considerably between species groups depending on whether structural attributes are perceived as heterogeneity or fragmentation. Possible effects may also vary relative to the structural variable measured. Based upon this, we introduce a classification framework that may be used for across-studies comparisons. Moreover, the effect of habitat heterogeneity for one species group may differ in relation to the spatial scale. In several studies, however, different species groups are closely linked to 'keystone structures' that determine animal species diversity by their presence. Detecting crucial keystone structures of the vegetation has profound implications for nature conservation and biodiversity management.}, language = {en} } @article{GrimmRevillaGroeneveldetal.2005, author = {Grimm, Volker and Revilla, Eloy and Groeneveld, J{\"u}rgen and Kramer-Schadt, Stephanie and Schwager, Monika and Tews, J{\"o}rg and Wichmann, Matthias and Jeltsch, Florian}, title = {Importance of buffer mechanisms for population viability analysis}, year = {2005}, language = {en} }