@article{SchubertFrischAllardetal.2017, author = {Schubert, Marcel and Frisch, Johannes and Allard, Sybille and Preis, Eduard and Scherf, Ullrich and Koch, Norbert and Neher, Dieter}, title = {Tuning side chain and main chain order in a prototypical donor-acceptor copolymer}, series = {Elementary Processes in Organic Photovoltaics}, volume = {272}, journal = {Elementary Processes in Organic Photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_10}, pages = {243 -- 265}, year = {2017}, abstract = {The recent development of donor-acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.}, language = {en} } @article{YinSchubertStilleretal.2008, author = {Yin, Chunhong and Schubert, Marcel and Stiller, Burkhard and Castellani, Mauro and Neher, Dieter and Kumke, Michael Uwe and H{\"o}rhold, Hans-Heinrich}, title = {Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends}, doi = {10.1021/Jp803977k}, year = {2008}, language = {en} } @article{BlakesleySchubertSteyrleuthneretal.2011, author = {Blakesley, James C. and Schubert, Marcel and Steyrleuthner, Robert and Chen, Zhihua and Facchetti, Antonio and Neher, Dieter}, title = {Time-of-flight measurements and vertical transport in a high electron-mobility polymer}, series = {Applied physics letters}, volume = {99}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3657827}, pages = {3}, year = {2011}, abstract = {We investigate charge transport in a high-electron mobility polymer, poly(N, N-bis 2-octyldodecyl-naphthalene-1,4,5,8-bis dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) [P(NDI2OD-T2), Polyera ActivInk (TM) N2200]. Time-of-flight measurements reveal electron mobilities approaching those measured in field-effect transistors, the highest ever recorded in a conjugated polymer using this technique. The modest temperature dependence and weak dispersion of the transients indicate low energetic disorder in this material. Steady-state electron-only current measurements reveal a barrier to injection of about 300 meV. We propose that this barrier is located within the P(NDI2OD-T2) film and arises from molecular orientation effects.}, language = {en} } @article{SteyrleuthnerDiPietroCollinsetal.2014, author = {Steyrleuthner, Robert and Di Pietro, Riccardo and Collins, Brian A. and Polzer, Frank and Himmelberger, Scott and Schubert, Marcel and Chen, Zhihua and Zhang, Shiming and Salleo, Alberto and Ade, Harald W. and Facchetti, Antonio and Neher, Dieter}, title = {The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja4118736}, pages = {4245 -- 4256}, year = {2014}, language = {en} } @article{KniepertSchubertBlakesleyetal.2011, author = {Kniepert, Juliane and Schubert, Marcel and Blakesley, James C. and Neher, Dieter}, title = {Photogeneration and recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments}, series = {The journal of physical chemistry letters}, volume = {2}, journal = {The journal of physical chemistry letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz200155b}, pages = {700 -- 705}, year = {2011}, abstract = {Time-delayed collection field (TDCF) experiments are performed on bulk heterojunction solar cells comprised of a blend of poly(3-hexylthiophene) and [6,6]-phenyl C-71 butyric acid methyl ester. TDCF is analogous to a pump-probe experiment using optical excitation and an electrical probe with a resolution of < 100 ns. The number of free charge carriers extracted after a short delay is found to be independent of the electric field during illumination. Also, experiments performed with a variable delay between the optical excitation and the electrical probe do not reveal any evidence for the generation of charge via field-assisted dissociation of bound long-lived polaron pairs. Photocurrent transients are well fitted by computational drift diffusion simulations with only direct generation of free charge carriers. With increasing delay times between pump and probe, two loss mechanisms are identified; first, charge-carriers are swept out of the device by the internal electric field, and second, bimolecular recombination of the remaining carriers takes place with a reduced recombination coefficient.}, language = {en} } @article{SiniSchubertRiskoetal.2018, author = {Sini, Gjergji and Schubert, Marcel and Risko, Chad and Roland, Steffen and Lee, Olivia P. and Chen, Zhihua and Richter, Thomas V. and Dolfen, Daniel and Coropceanu, Veaceslav and Ludwigs, Sabine and Scherf, Ullrich and Facchetti, Antonio and Frechet, Jean M. J. and Neher, Dieter}, title = {On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702232}, pages = {15}, year = {2018}, abstract = {Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.}, language = {en} } @article{SchubertPreisBlakesleyetal.2013, author = {Schubert, Marcel and Preis, Eduard and Blakesley, James C. and Pingel, Patrick and Scherf, Ullrich and Neher, Dieter}, title = {Mobility relaxation and electron trapping in a donor/acceptor copolymer}, series = {Physical review : B, Condensed matter and materials physics}, volume = {87}, journal = {Physical review : B, Condensed matter and materials physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.87.024203}, pages = {12}, year = {2013}, abstract = {To address the nature of charge transport and the origin of severe (intrinsic) trapping in electron-transporting polymers, transient and steady-state charge transport measurements have been conducted on the prototype donor/acceptor copolymer poly[2,7-(9,9-dialkyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PFTBTT). A charge-generation layer technique is used to selectively address transport of the desired charge carrier type, to perform time-of-flight measurements on samples with < 200 nm thickness, and to combine the time-of-flight and the photocharge extraction by linearly increasing voltage (photo-CELIV) techniques to investigate charge carrier dynamics over a wide time range. Significant trapping of free electrons is observed in the bulk of dioctyl-substituted PFTBTT (alt-PF8TBTT), introducing a strong relaxation of the charge carrier mobility with time. We used Monte-Carlo simulation to simulate the measured transient data and found that all measurements can be modeled with a single parameter set, with the charge transport behavior determined by multiple trapping and detrapping of electrons in an exponential trap distribution. The influence of the concomitant mobility relaxation on the transient photocurrent characteristics in photo-CELIV experiments is discussed and shown to explain subtle features that were seen in former publications but were not yet assigned to electron trapping. Comparable studies on PFTBTT copolymers with chemical modifications of the side chains and backbone suggest that the observed electron trapping is not caused by a distinct chemical species but rather is related to interchain interactions.}, language = {en} } @article{SchattauerReinholdAlbrechtetal.2012, author = {Schattauer, Sylvia and Reinhold, Beate and Albrecht, Steve and Fahrenson, Christoph and Schubert, Marcel and Janietz, Silvia and Neher, Dieter}, title = {Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol-gel approach}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {290}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {18}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-012-2708-9}, pages = {1843 -- 1854}, year = {2012}, abstract = {In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol-gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600 A degrees C is found to alter the chemical composition, the layer's porosity and its surface but not the crystal phase. The room temperature mobility increases from 2 x 10(-6) to 3 x 10(-5) cm(2)/Vs when the sinter temperature is increased from 400 to 600 A degrees C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550 A degrees C, while the polymer penetrated deeply into titania layers that were sintered at 600 A degrees C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550 A degrees C, which yielded a power conversion efficiency of 0.5 \%. Noticeably, samples with the TiO2 layer dried at 120 A degrees C displayed short-circuit currents and open circuit voltages only about 15-20 \% lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures.}, language = {en} } @article{SchubertDolfenFrischetal.2012, author = {Schubert, Marcel and Dolfen, Daniel and Frisch, Johannes and Roland, Steffen and Steyrleuthner, Robert and Stiller, Burkhard and Chen, Zhihua and Scherf, Ullrich and Koch, Norbert and Facchetti, Antonio and Neher, Dieter}, title = {Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers}, series = {dvanced energy materials}, volume = {2}, journal = {dvanced energy materials}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201100601}, pages = {369 -- 380}, year = {2012}, abstract = {The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4\%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70\%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction.}, language = {en} } @article{SchubertYinCastellanietal.2009, author = {Schubert, Marcel and Yin, Chunhong and Castellani, Mauro and Bange, Sebastian and Tam, Teck Lip and Sellinger, Alan and Hoerhold, Hans-Heinrich and Kietzke, Thomas and Neher, Dieter}, title = {Heterojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells}, issn = {0021-9606}, doi = {10.1063/1.3077007}, year = {2009}, abstract = {The authors present organic photovoltaic (OPV) devices comprising a small molecule electron acceptor based on 2- vinyl-4,5-dicyanoimidazole (Vinazene (TM)) and a soluble poly(p-phenylenevinylene) derivative as the electron donor. A strong dependence of the fill factor (FF) and the external quantum efficiency [incident photons converted to electrons (IPCE)] on the heterojunction topology is observed. As-prepared blends provided relatively low FF and IPCE values of 26\% and 4.5\%, respectively, which are attributed to significant recombination of geminate pairs and free carriers in a highly intermixed blend morphology. Going to an all-solution processed bilayer device, the FF and IPCE dramatically increased to 43\% and 27\%, respectively. The FF increases further to 57\% in devices comprising thermally deposited Vinazene layers where there is virtually no interpenetration at the donor/acceptor interface. This very high FF is comparable to values reported for OPV using fullerenes as the electron acceptor. Furthermore, the rather low electron affinity of Vinazene compound near 3.5 eV enabled a technologically important open circuit voltage (V-oc) of 1.0 V.}, language = {en} }