@misc{KruegerKellingLinkeretal.2019, author = {Krueger, Tobias and Kelling, Alexandra and Linker, Torsten and Schilde, Uwe}, title = {Crystal structures of three cyclohexane‑based γ‑spirolactams}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {738}, doi = {10.25932/publishup-43491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434911}, pages = {9}, year = {2019}, abstract = {The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N-H···O hydrogen bonds.}, language = {en} } @article{KruegerKellingSchildeetal.2016, author = {Kr{\"u}ger, Tobias and Kelling, Alexandra and Schilde, Uwe and Linker, Torsten}, title = {Simple Synthesis of gamma-Spirolactams by Birch Reduction of Benzoic Acids}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201601650}, pages = {1074 -- 1077}, year = {2016}, abstract = {A convenient synthesis of gamma-spirolactams in only two steps was developed. Birch reduction of benzoic acids and immediate alkylation with chloroacetonitrile afforded cyclohexadienes in high yields. The products could be isolated by crystallization on a large scale in analytically pure form. Subsequent hydrogenation with platinum(IV) oxide as the catalyst reduced the nitrile functionality and the double bonds in the same step with excellent stereoselectivity. The relative configurations were determined unequivocally by X-ray analyses. Direct cyclization of the intermediary formed amino acids afforded the desired gamma-spirolactams in excellent overall yields. The procedure is characterized by few steps, cheap reagents, and can be performed on a large scale, interesting for industrial processes.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, series = {Acta crystallographica Section E ; Crystallographic communications}, volume = {72}, journal = {Acta crystallographica Section E ; Crystallographic communications}, number = {12}, publisher = {IUCR}, address = {Chester}, issn = {2056-9890}, doi = {10.1107/S2056989016018727}, pages = {1839 -- 1844}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo- [4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7- hydroxyimino-2-oxobicyclo[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5- yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @misc{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100833}, pages = {6}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @article{GroboschMicklerFeisteletal.2006, author = {Grobosch, Thomas and Mickler, Wulfhard and Feistel, Lothar and Schilde, Uwe}, title = {Separation of arsenic and other heavy metals with impregnated adsorber polymers : chapter 1: synthesis of the impregnation medium and separation of arsenic}, issn = {0009-286X}, doi = {10.1002/cite.200500170}, year = {2006}, language = {en} } @article{KimSchildeLinker2005, author = {Kim, Boo Geun and Schilde, Uwe and Linker, Torsten}, title = {New radical approaches to 3-deoxy-D-oct-2-ulosonic acids (KDO)}, issn = {0039-7881}, year = {2005}, abstract = {Two different approaches. with an unsaturated carbohydrate as a radical acceptor and a carbohydrate derived aldehyde as a radical precursor, led to key intermediates in the synthesis of 3-deoxy-D-oct-2-ulosonic acids (KDO). Manganese(III) acetate and cerium(IV) ammonium nitrate were the reagents of choice for the oxidative generation of radicals, whereas samarium(II) iodide was employed for reductive couplings. Both strategies were realized by using easily available starting materials, with acetic acid as C-2 and ethyl acrylate as C-3 building blocks, respectively}, language = {en} } @article{SieboldKellingSchildeetal.2005, author = {Siebold, M. and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Heterobimetallic 3d-4-complexes with bis(1;2-dithiooxalato)nickelate(II) as planar bridging block}, issn = {0932-0776}, year = {2005}, abstract = {Planar bis(1,2-dithiooxalato)nickelates(II) react in aqueous solutions of lanthanide ions to form pentanuclear, heterobimetallic complexes of the general composition [{Ln(H2O)(n)}(2)- {Ni(dto)(2)}(3)] (.) xH(2)O (Ln = Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+; n = 4 or 5; x = 9-12). With [{Nd(H2O)(5)}(2){Ni(S2C2O2)(2)}(3)] (.) xH(2)O (x = 10-12) (1) and [{Er(H2O)(4)}(2){Ni(S2C2O2)(2)}(3)] (.) xH(2)O (x = 9- 10) (2) we were able to isolate two complexes of this series as single crystals, which were characterized by X-ray structure analysis. Depending on the individual ionic radii of the lanthanide ions, the compounds crystallize in two different crystal systems with the following unit cell parameters: 1, monoclinic in P2(1)/c with a = 11.3987(13), b = 11.4878(8), c = 20.823(2)angstrom , beta = 98.907(9)degrees and Z = 2; 2, triclinic in P (1) over bar with a = 10.5091(6), b = 11.0604(6), c = 11.2823(6) angstrom, alpha = 107.899(4)degrees, beta = 91.436(4)degrees, gamma = 112.918(4)degrees and Z = 1. The channels and cavities appearing in the packing of the molecules are occupied by uncoordinated water molecules. High magnetic moments up to 14.65 BM./f.u. have been observed at room temperature due to the combined moments of the individual lanthanide ions}, language = {en} } @article{ShainyanMoskalikStarkeetal.2010, author = {Shainyan, Bagrat A. and Moskalik, Mikail Yu and Starke, Ines and Schilde, Uwe}, title = {Formation of unexpected products in the attempted aziridination of styrene with trifluoromethanesulfonyl nitrene}, issn = {0040-4020}, doi = {10.1016/j.tet.2010.08.070}, year = {2010}, abstract = {The reaction of styrene with trifluoromethanesulfonyl nitrene generated from trifluoromethanesulfonamide in the system (t-BuOCl+NaI) results in the formation of trifluoro-N-[2-phenyl-2-(trifluoromethylsulfonyl) aminoethyl]methanesulfonamide, 1-pheny1-2-iodo-ethanol, and 2,5-diphenyl-1,4-bis(trifluoromethyl sulfonyl)piperazine rather than the expected product of aziridination, 2-phenyl-1-(trifluoromethylsulfonyl) aziridine. The mechanism of the reaction is discussed.}, language = {en} } @article{PeikowMaternPeteretal.2005, author = {Peikow, Dirk and Matern, Christa-Maria and Peter, Martin G. and Schilde, Uwe}, title = {Crystal structure of (1,4,7,10,13-pentaoxacyclopentadecane-O,O ',O '',O ''')(trifluoromethanesulfonato-O,O ')sodium, Na(C10H20O5)(CF3SO3)}, year = {2005}, abstract = {C11H20F3NaO8S, monoclinic, P121/nil (no. 11), a = 7.947(1) angstrom, b = 12.056(1) angstrom, c = 9.083(1) angstrom, P = 106.01 (1)degrees, V = 836.4 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.120, T = 210 K.}, language = {en} } @article{KruseHeydenreichEngstetal.2005, author = {Kruse, Hans-Peter and Heydenreich, Matthias and Engst, W. and Schilde, Uwe and Kroll, J{\"u}rgen}, title = {The identification of 1,3-oxazolidine-2-thiones and 1,3-thiazolidine-2-thiones from the reaction of glucose with benzyl isothiocyanate}, issn = {0008-6215}, year = {2005}, abstract = {The structure of interaction products resulting from the reaction of unmodified glucose with benzyl isothiocyanate is reported. Prior to their identification, the main products of this reaction were isolated using solid- phase extraction (SPE) as well as preparative HPLC. They were then identified by NMR and MS as 3-benzyl-4-hydroxy-5-(D- arabino-1,2,3,4-tetrahydroxybutyl)- 1,3-oxazolidine-2-thione, 3-benzyl-4-hydroxy-4-hydroxymethyl-5-(D-erythro-1,2,3- trihydroxypropyl)- 1,3-oxazolidine-2-thione, N-benzyl-(D-gluco-4,5-dihydroxy-6-hydroxymethyl-tetrahydropyrano)[2,3-b] oxazolidine-2-thione and 3-benzyl-4-(N-benzyl amino)-5-(D-arabino-1,2,3,4-tetrahydroxybutyl)-1,3-thiazolidine-2-thione . The identity of the last compound was secured by X-ray crystal structure data. (C) 2004 Elsevier Ltd. All rights reserved}, language = {en} } @article{WenzelWehseSchildeetal.2004, author = {Wenzel, Barbara and Wehse, Burkhard and Schilde, Uwe and Strauch, Peter}, title = {1,2-Dithioquadratato- und 1,2-Dithiooxalatoindate(III) = 1,2-dithiosquarato- and 1,2-dithiooxalatoindates(III)}, year = {2004}, abstract = {Indium(III) chloride forms in water with potassium 1,2-dithiooxalate (dto) and potassium 1,2-dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2-dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2-dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe(3)N)(4)[(dto)(2)In(dto)In(dto)(2)] (1), (BzlPh(3)P)(4)[(dto)(2)In(dto)In(dto)(2)] (2), (BzlMe(3)N)(3)[In(dtsq)(3)] (3), (Bu4N)(3)[In(dtsq)(3)] (4) and (Ph4P)[In(dtsq)(2)(DMF)(2)] (5), have been isolated and characterized by X-ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1, monoclinic in P2(1)/c with a = 14.4035(5) Angstrom, b = 10.8141(5) Angstrom, c = 23.3698(9) Angstrom, beta = 124.664(2)degrees, and Z = 2; 2, triclinic in P (1) over bar with a = 11.3872(7) Angstrom, b = 13.6669(9) Angstrom, c = 17.4296(10) Angstrom, alpha = 88.883(5)degrees, beta = 96.763(1)degrees, gamma = 74.587(5)degrees, and Z = 1; 3, hexagonal in R3 with a = 20.6501(16) Angstrom, b = 20.6501(16) Angstrom, c = 19.0706(13) Angstrom and Z = 6; 4, monoclinic in P21/c with a = 22.7650(15) Angstrom, b = 20.4656(10) Angstrom, c = 14.4770(9) Angstrom, P}, language = {de} } @article{RathAnandSankaretal.2003, author = {Rath, Harapriya and Anand, V. G. and Sankar, J. and Venkatraman, S. and Chandrashekar, T. K. and Joshi, Bhawani S. and Khetrapal, C. L. and Schilde, Uwe and Senge, Mathias O.}, title = {Core-Modified Hexaphyrins; Characterization of Two- and Four-Ring Inverted 26 {\^o} Aromatic Macrocycles}, year = {2003}, language = {en} } @article{GroboschSchildeTiersch2006, author = {Grobosch, Thomas and Schilde, Uwe and Tiersch, Brigitte}, title = {Abtrennung von Arsen und anderer Schwermetalle mit impr{\"a}gnierten Adsorberpolymeren - teil 2: Abtrennung von Blei, Kupfer, Nickel und Zink}, issn = {0009-286X}, doi = {10.1002/cite.200500171}, year = {2006}, language = {de} } @article{WessigGerngrossFreyseetal.2016, author = {Wessig, Pablo and Gerngross, Maik and Freyse, Daniel and Bruhn, P. and Przezdziak, Marc and Schilde, Uwe and Kelling, Alexandra}, title = {Molecular Rods Based on Oligo-spiro-thioketals}, series = {The journal of organic chemistry}, volume = {81}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b02670}, pages = {1125 -- 1136}, year = {2016}, abstract = {We report on an extension of the previously established concept of oligospiroketal (OSK) rods by replacing a part or all ketal moieties by thioketals leading to oligospirothioketal (OSTK) rods. In this way, some crucial problems arising from the reversible formation of ketals are circumvented. Furthermore, the stability of the rods toward hydrolysis is considerably improved. To successfully implement this concept, we first developed a number of new oligothiol building blocks and improved the synthetic accessibility of known oligothiols, respectively. Another advantage of thioacetals is that terephthalaldehyde (TAA) sleeves, which are too flexible in the case of acetals can be used in OSTK rods. The viability of the OSTK approach was demonstrated by the successful preparation of some OSTK rods with a length of some nanometers.}, language = {en} } @article{LeeHwangSchildeetal.2018, author = {Lee, Hui-Chun and Hwang, Jongkook and Schilde, Uwe and Antonietti, Markus and Matyjaszewski, Krzysztof and Schmidt, Bernhard V. K. J.}, title = {Toward ultimate control of radical polymerization}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00546}, pages = {2983 -- 2994}, year = {2018}, abstract = {Herein, an approach via combination of confined porous textures and reversible deactivation radical polymerization techniques is proposed to advance synthetic polymer chemistry, i.e., a connection of metal-organic frameworks (MOFs) and activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). Zn-2(benzene-1,4-dicarboxylate)2(1,4-diazabicyclo[2.2.2]-octane) [Zn-2(bdc)(2)(dabco)] is utilized as a reaction environment for polymerization of various methacrylate monomers (methyl, ethyl, benzyl, and isobornyl methacrylate) in a confined nanochannel, resulting in polymers with control over dispersity, end functionalities, and tacticity with respect to distinct molecular size. To refine and reconsolidate the compartmentation effect on polymer regularity, initiator-functionalized Zn MOF was synthesized via cocrystallization with an initiator-functionalized ligand, 2-(2-bromo-2-methylpropanamido)-1,4-benzenedicarboxylate (Brbdc), in different ratios (10\%, 20\%, and 50\%). Through the embedded initiator, surface-initiated ARGET ATRP was directly initiated from the walls of the nanochannels. The obtained polymers had a high molecular weight up to 392 000. Moreover, a significant improvement in end-group functionality and stereocontrol was observed, entailing polymers with obvious increments in isotacticity. The results highlight a combination of MOFs and ATRP that is a promising and universal methodology to prepare various polymers with high molecular weight exhibiting well-defined uniformity in chain length and microstructure as well as the preserved chain-end functionality.}, language = {en} } @article{BrietzkeMicklerKellingetal.2012, author = {Brietzke, Thomas Martin and Mickler, Wulfhard and Kelling, Alexandra and Schilde, Uwe and Kr{\"u}ger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {Mono- and dinuclear Ruthenium(II)-1,6,7,12-Tetraazaperylene complexes of N,N '-Dimethyl-2,11-diaza[3.3](2,6)-pyridinophane}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {29}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200667}, pages = {4632 -- 4643}, year = {2012}, abstract = {Ruthenium(II) complexes [Ru(L-N4Me2)(dape)](PF6)2 {[1](PF6)2}, [Ru(L-N4Me2)(tape)](PF6)2 {[2](PF6)2}, and [{Ru(L-N4Me2)}2(mu-tape)](PF6)4 {[3](PF6)4} were synthesized in two reaction steps by first reacting [Ru(DMSO)4Cl2] with tetraazamacrocyclic ligand N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) in ethanol under microwave irradiation to the intermediate [Ru(L-N4Me2)Cl2], which was subsequently, without further isolation, reacted with 1,12-diazaperylene (dape) or 1,6,7,12-tetraazaperylene (tape). X-ray structures of [Ru(L-N4Me2)(dape)](PF6)2, [Ru(L-N4Me2)(tape)](PF6)2.acetone, and [{Ru(L-N4Me2)}2(mu-tape)](ClO4)4.MeCN were determined. The UV/Vis absorption spectra of [1](PF6)2, [2](PF6)2, and [3](PF6)4 in acetonitrile display intense low-energy dp(Ru)?p* (dape or tape) MLCT absorption bands centered at 579, 637, and 794 nm, respectively. Reversible metal oxidations for the bimetallic complex [{Ru(L-N4Me2)}2(mu-tape)]4+ ([3]4+) are detected at 1.69 and 1.28 V vs. SCE. The potential difference ?E = 410 mV and the intervalence-charge-transfer (IVCT) transition at 2472 nm indicate a high degree of electronic interaction between the two ruthenium ions mediated through the tape bridging ligand. All three complexes, [1]2+, [2]2+, and [3]4+, were characterized by UV/Vis spectroelectrochemistry. The monooxidized and monoreduced states, [1]3+, [2]3+, [3]5+, and [1]+, [2]+, [3]3+, are accessible by reversible one-electron oxidation and one-electron reduction processes, respectively, as documented by the observation of several stable isosbestic points in the spectral progressions. The second reduction in each complex and the second oxidation in [3]4+ prove to be irreversible in these spectroelectrochemical experiments. Monoreduced species [1]+, [2]+, and [3]3+ yield EPR signals indicating that the unpaired electron is mainly centered on the large surface ligands dape or tape.}, language = {en} } @misc{KirsteBrietzkeHoldtetal.2019, author = {Kirste, Matthias and Brietzke, Thomas Martin and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {752}, issn = {1866-8372}, doi = {10.25932/publishup-43650}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436501}, pages = {3}, year = {2019}, abstract = {C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) {\AA}, b=11.4021(14) {\AA}, c=13.3572(15) {\AA}, β=105.363(8)°, V =1164.5(2) {\AA}³, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K.}, language = {en} } @misc{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401952}, pages = {3}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @article{KirsteBrietzkeHoldtetal.2019, author = {Kirste, Matthias and Brietzke, Thomas Martin and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {234}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {6}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7105}, doi = {10.1515/NCRS-2019-0385}, pages = {1255 -- 1257}, year = {2019}, abstract = {C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) {\AA}, b=11.4021(14) {\AA}, c=13.3572(15) {\AA}, β=105.363(8)°, V =1164.5(2) {\AA}³, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K.}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, number = {5}, publisher = {de Gruyter}, address = {Berlin}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @article{MuellerKellingSchildeetal.2009, author = {M{\"u}ller, Holger and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Ag(I)-, Hg(II)- und Pt(II)-Komplexe von Maleonitril-thiakronenethern}, issn = {0932-0776}, year = {2009}, abstract = {The synthesis and single crystal X-ray structures of eight AgI, HgII, and PtII complexes with the thiacrown ethers maleonitrile-tetrathia-12-crown-4 (mn12S4), maleonitrile-tetrathia-13-crown-4 (mn13S4), and maleonitrile- pentathia-15-crown-5 (mn15S5) (1) are reported. The ligand mn15S5 was synthesized for the first time and characterized by X-ray diffraction. With silver(I) perchlorate and silver(I) tetrafluoroborate it forms the chiral complexes [Ag(mn15S5)]ClO4·CH3NO2 (2) and [Ag(mn15S5)]BF4·CH3NO2·0.25H2O (3) with half-sandwich moieties. AgI is located in a distorted tetrahedral coordination environment, involving three sulfur atoms of the crown cycle and a fourth one of the adjacent half-sandwich moiety, forming a helical structure. The reaction of Hg(ClO4)2 with mn13S4 yielded the dinuclear complex [Hg2(mn13S4)3](ClO4)4 (4) containing two half-sandwich moieties with a third ligand molecule as a bridging unit. Mercury(II) chloride and mercury(II) iodide react with mn12S4 and mn13S4 to form complexes of the general composition [HgX2(L)] (X = Cl, I; L = mn12S4, mn13S4): [HgCl2(mn12S4)] (5), [HgI2(mn12S4)] (6), [HgCl2(mn13S4)] (7) or [HgX2(L)2] (X = I; L = mn13S4): [HgI2(mn13S4)2] (8). Only one or two sulfur atoms of the ligand are involved in the complexation, and chain or ribbon structures are formed. In these compounds the HgX2 units (X = Cl, I) are preserved, coordinated by sulfur atoms of bridging mn12S4 or mn13S4 ligands. In all complexes of this type, the metal atoms are not coordinated inside the cavity, but in an exocyclic mode, because the diameter of the macrocycle is too small. Additionally, the PtCl2 complex of mn12S4 was investigated, where PtII is coordinated in an exocyclic mode forming the complex [PtCl2(mn12S4)] (9). Two of the four sulfur atoms of the macrocycle are bonded to the metal giving together with both chlorine atoms a square-planar coordination geometry. Together with a long-range interaction with a further sulfur atom of the macrocycle a square-pyramidal coordination environment is formed.}, language = {de} } @article{DebatinThomasKellingetal.2010, author = {Debatin, Franziska and Thomas, Arne and Kelling, Alexandra and Hedin, Niklas and Bacsik, Zoltan and Senkovska, Irena and Kaskel, Stefan and Junginger, Matthias and M{\"u}ller, Holger and Schilde, Uwe and J{\"a}ger, Christian and Friedrich, Alwin and Holdt, Hans-J{\"u}rgen}, title = {In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability}, issn = {1433-7851}, doi = {10.1002/anie.200906188}, year = {2010}, abstract = {Narrow channels with polar walls are the structural and functional features responsible for the high capacity of a zinc-organic framework based on an imidazolate-amide-imidate ligand for the uptake of H2 and CO2 (see structure: orange Zn, blue N, red O, dark gray C, light gray H). The rigid and stable chelating ligand was synthesized in situ by partial hydrolysis of a dicyanoimidazole compound.}, language = {en} } @article{BaierKellingSchildeetal.2016, author = {Baier, Heiko and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500625}, pages = {140 -- 147}, year = {2016}, abstract = {The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.}, language = {en} } @article{BrietzkeKellingSchildeetal.2016, author = {Brietzke, Thomas Martin and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Holdt, Hans-J{\"u}rgen}, title = {Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II)}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500645}, pages = {8 -- 13}, year = {2016}, abstract = {The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand.}, language = {en} } @article{HoldtMuellerKellingetal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Kelling, Alexandra and Drexler, Hans-Joachim and M{\"u}ller, Thomas and Schwarze, Thomas and Schilde, Uwe and Starke, Ines}, title = {Mercury(II) chloride and iodide complexes of dithia- and tetrathiacrown ethers}, issn = {0044-2313}, doi = {10.1002/zaac.200500281}, year = {2006}, abstract = {The complexes [(HgCl2)(2)((ch)(2)30S(4)O(6))] (1), [HgCl,(mn21S(2)O(5))] (2), [HgCl2(ch18S(2)O(4))] (3) and [HgI(meb12S(2)O(2))](2)[Hg2I6] (4) have been synthesized, characterized and their crystal structures were determined. In [(HgCl2)(2)((ch)(2)3OS(4)O(6))] two HgCl2 units are discretely bonded within the ligand cavity of the 30-membered dichinoxaline-tetrathia-30-crown-10 ((ch)(2)30S(4)O(6)) forming a binuclear complex. HgCl2 forms I : I "in-cavity" complexes with the 21-membered maleonitrile-dithia-21-crown-7(mn21S(2)O(5)) ligand and the 18-membered chinoxaline- dithia-18-crown-6 (ch18S(2)O(4)) ligand, respectively. The 12-membered 4-methyl-benzo-dithia-12-crown-4 (meb12S(2)O(2)) ligand gave with two equivalents HgI2 the compound [HgI(meb12S(2)O(2))](2)[Hg2I6]. In the cation [HgI(meb12S(2)O(2))](+) meb12S(2)O(2) forms with the cation HgI+ a half-sandwich complex}, language = {en} } @article{KammerMuellerGrunwaldetal.2006, author = {Kammer, Stefan and M{\"u}ller, Holger and Grunwald, Nicolas and Bellin, Anja and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Dosche, Carsten and Holdt, Hans-J{\"u}rgen}, title = {Supramolecular assemblies with honeycomb structures by pi-pi stacking of octahedral metal complexes of 1,12- diazaperylene}, issn = {1343-1948}, doi = {10.1002/ejic.200600092}, year = {2006}, abstract = {Homoleptic Ni-II and Fe-II complexes of the "large-surface" phenanthroline-type ligand 1,12-diazaperylene (dap), [Ni(dap)(3)](BF4)(2) (1) and [Fe(dap)(3)](PF6)(2) (2), respectively, were synthesized. In the crystal structure the complex cation [M(dap)(3)](2+) (M = Ni, Fe) exhibits C-3 symmetry and interacts with three other cations by pi-pi stacking. It forms a new metalla-supramolecular assembly with a honeycomb structure containing nanochannels running parallel to the crystallographic c axis. Aggregation by pi-pi stacking between metal complexes of "large-surface" ligands should give new perspectives for inorganic supramolecular chemistry.}, language = {en} } @article{HahnKellingSchildeetal.2008, author = {Hahn, Simone and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Crystal structure of bis(2-ethylthiomethylpyridine)platinum(II) hexachloroplatinate, [Pt(C8H11NS)2][PtCl6]}, issn = {1433-7266}, doi = {10.1524/ncrs.2008.0216}, year = {2008}, abstract = {C16H22Cl6N2Pt2S2, orthorhombic, Pbca (no. 61), a = 15.5660(8) angstrom, b = 17.4892(9) angstrom, c = 18.161 (1) angstrom, V = 4944. 1 angstrom(3), Z = 8, R-gt(F) = 0.030, wR(ref)(F-2) = 0.055, T = 210 K.}, language = {en} } @article{SchwarzeTraegerKellingetal.2013, author = {Schwarze, Thomas and Traeger, Juliane and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Macrocyclic dithiomaleonitriles for an efficient PdCl2 coordination}, series = {Inorganica chimica acta : the international inorganic chemistry journal}, volume = {408}, journal = {Inorganica chimica acta : the international inorganic chemistry journal}, number = {2}, publisher = {Elsevier}, address = {Lausanne}, issn = {0020-1693}, doi = {10.1016/j.ica.2013.08.020}, pages = {53 -- 58}, year = {2013}, abstract = {We have synthesized a set of new unsaturated macrocyclic dithioethers with an increasing number of flexible methylene units 1-7 (Scheme 2) to investigate the correlation between the ring size of these ligands, the chelation effect and the consequences for an efficient PdCl2 coordination. The dithioethers 1-7 and the complex [PdCl2(4)]center dot CHCl3 were characterized by X-ray diffraction analysis. The crystal structures of 1-7 show that 2-7 are better preorganized chelating ligands for an exocyclic PdCl2 coordination than 1. The chelation effect of 1-7, the orientation of the sulfur atoms and the S center dot center dot center dot S donor distances, are influenced by the flexibility of the methylene units. In this series the unsaturated macrocyclic ligands 5 and 6 are the best chelating ligands for an efficient PdCl2 coordination. Comparative solvent extraction experiments with mn-12S(2)O(2) (mn = maleonitrile) reveal that the low interface activity of the new ligands reduces the extraction rate. However, a comparison with open-chain dithiomaleonitriles shows the impact of the macrocyclic effect of 4 and 5 on the extraction yield.}, language = {en} } @article{BrietzkeDietzKellingetal.2017, author = {Brietzke, Thomas Martin and Dietz, Thomas and Kelling, Alexandra and Schilde, Uwe and Bois, Juliana and Kelm, Harald and Reh, Manuel and Schmitz, Markus and Koerzdoerfer, Thomas and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Krueger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {The 1,6,7,12-Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme-Electrode Process}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201703639}, pages = {15583 -- 15587}, year = {2017}, abstract = {The homodinuclear ruthenium(II) complex [{Ru(l-N4Me2)}(2)(-tape)](PF6)(4) {[1](PF6)(4)} (l-N4Me2=N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying * orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4Me2)}(2)(-tape(.-))](PF6)(3) {[2](PF6)(3)} and [{Ru(l-N4Me2)}(2)(-tape(2-))](PF6)(2) {[3](PF6)(2)}, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6)(3) contains the -radical tape(.-) and the doubly reduced [3](PF6)(2) the diamagnetic dianion tape(2-) as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1](4+) by two sulfite units gave the complex [{Ru(l-N4Me2)}(2){-tape-(SO3)(2)}](2+) ([4](2+)). Complex dication [4](2+) was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy *-orbital of the disulfonato-substituted bridging ligand tape-(SO3)(2)(2-) (E-red1=-0.1V versus Ag/AgCl/1m KCl in water).}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1\&\#8242;-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, publisher = {De Gruyter}, address = {Berlin}, issn = {1433-7266}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K.}, language = {en} } @article{GonzalezChavarriaDupratRoaetal.2020, author = {Gonzalez-Chavarria, Ivan and Duprat, Felix and Roa, Francisco J. and Jara, Nery and Toledo, Jorge R. and Miranda, Felipe and Becerra, Jose and Inostroza, Alejandro and Kelling, Alexandra and Schilde, Uwe and Heydenreich, Matthias and Paz, Cristian}, title = {Maytenus disticha extract and an isolated β-Dihydroagarofuran induce mitochondrial depolarization and apoptosis in human cancer cells by increasing mitochondrial reactive oxygen species}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10030377}, pages = {15}, year = {2020}, abstract = {Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. beta-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (mu g/mL) of 40, 4.7, and 5 mu g/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The beta-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-beta-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 mu M, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the beta-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction.}, language = {en} } @article{UhlemannKraudeltSchildeetal.1996, author = {Uhlemann, Erhard and Kraudelt, Heide and Schilde, Uwe and Hefele, Heike and Ludwig, Eberhard}, title = {Titan- und Vanadiumkomplexe mit 4-[1-[N'-Benzoyl-hydrazino)-1-phenyl-methyliden]-3-methyl-1-phenyl- pyrazol-5-on : R{\"o}ntgenkristallstruktur von 4-[1- (N-Benzoyl-hydrazino)-1-phenyl-methyl-methyliden]-3-methyl-1- phenyl-pyrazol-5-on}, year = {1996}, language = {de} } @article{UhlemannHefeleLudwigetal.1996, author = {Uhlemann, Erhard and Hefele, Heike and Ludwig, Eberhard and Schilde, Uwe}, title = {Crystal structure of methoxo-oxo[benzoylaceton-salicyl hydrazonato(2-)]vanadium(V), C18H17N2O5V}, issn = {0044-2968}, year = {1996}, language = {en} } @article{UhlemannProchaskaLudwigetal.1996, author = {Uhlemann, Erhard and Prochaska, Krystyna and Ludwig, Eberhard and Schilde, Uwe}, title = {Hydrolyse von Trifluoracetylaceton-Salicylhydrazon : Struktur von Acetonsalicylhydrazon}, year = {1996}, language = {de} } @article{UhlemannGroboschSchildeetal.1996, author = {Uhlemann, Erhard and Grobosch, Thomas and Schilde, Uwe and Feistel, Lothar}, title = {Abtrennung von Arsen(V) aus Grundwasser mittels Ionenaustauscher}, year = {1996}, language = {de} } @article{UhlemannKraudeltLudwigetal.1996, author = {Uhlemann, Erhard and Kraudelt, Heide and Ludwig, Eberhard and Schilde, Uwe}, title = {Molek{\"u}lstrukturen von Tautomeren des Benzoylaceton-benzoylhydrazons}, year = {1996}, language = {de} } @article{MirskovaAdamovichMirskovetal.2013, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2: first conversion of a protic ionic liquid into metallated ionic liquid}, series = {CHEMISTRY CENTRAL JOURNAL}, volume = {7}, journal = {CHEMISTRY CENTRAL JOURNAL}, publisher = {BIOMED CENTRAL LTD}, address = {LONDON}, issn = {1752-153X}, doi = {10.1186/1752-153X-7-34}, pages = {5}, year = {2013}, abstract = {The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H+N(CH2CH2OH)(3) center dot (-OOCCH2SC6H4Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H+N(CH2CH2OH)(3)](2) center dot [M(OOCCH2SC6H4Cl-4)(2)Cl-2](2-), M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH2SC6H4Cl-4)(2) center dot 2H(2)O (4). Unlike 2, compound 3 gives crystals [N(CH2CH2OH)(3)](2)Ni2+ center dot [-OOCCH2SC6H4Cl-4](2) (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 -> 3 -> 5).}, language = {en} } @article{SchildeMicklerUhlemann1997, author = {Schilde, Uwe and Mickler, Wulfhard and Uhlemann, Erhard}, title = {Crystal structure of bis(1-phenyl-5-cyclohexyl-pentane-1,3-dionato-copper(II)}, issn = {0044-2968}, year = {1997}, language = {en} } @article{HeydenreichPoleschnerSchilde1996, author = {Heydenreich, Matthias and Poleschner, Helmut and Schilde, Uwe}, title = {Fluoroselenenylation of Acetylenes with Xenon Difluoride-Diorganyl Diselenides : synthesis and structure elucidation of functionalized Vicinal (E)-Fluoro(organylseleno)olefins}, year = {1996}, language = {en} } @article{UhlemannLudwigSchilde1996, author = {Uhlemann, Erhard and Ludwig, Eberhard and Schilde, Uwe}, title = {Synthese und Struktur des Kupferkomplexes 2-(2-Hydroxy-5-methylphenyl)-6-(2-hydroxy phenyl)pyridinato(2-)- dipyridin-kupfer(II) und des freien Liganden}, year = {1996}, language = {de} } @article{SchildePoleschner1996, author = {Schilde, Uwe and Poleschner, Helmut}, title = {The first structure of a vicinal (E)-Fluoroselenoolefin: (E)-(5-Fluoro-4-octen-4-yl)dimethylselenonium Picrate}, year = {1996}, language = {en} } @article{UhlemannBansseLudwigetal.1995, author = {Uhlemann, Erhard and Banße, Wolfgang and Ludwig, Eberhard and Schilde, Uwe and Weller, Frank}, title = {Ligand Exchange Reactions of Bis(acetyl-acetonato)dioxomolybdenum(VI) and Molybdenum Hexacarbonyl}, year = {1995}, language = {en} } @article{UhlemannSchildeKraudelt1994, author = {Uhlemann, Erhard and Schilde, Uwe and Kraudelt, Heide}, title = {Separation of the oxoanions of germanium, tin, arsenic, antimony, tellurium, molybdenum and tungsten with a special chelating resin containing methylaminoglucitol groups}, year = {1994}, language = {en} } @article{UhlemannSchildeKraudelt1994, author = {Uhlemann, Erhard and Schilde, Uwe and Kraudelt, Heide}, title = {Sorption of coinage metal cyano complexes by a chelating resin containing amino-glucitol groups}, year = {1994}, language = {en} } @phdthesis{Schilde1992, author = {Schilde, Uwe}, title = {Zur Abtrennung von Oxoanionen mittels chelatbildender Ionenaustauscher}, pages = {III, 181 Bl. : graph. Darst. + Thesen (1 Ex.)}, year = {1992}, language = {de} } @article{ShainyanMeshcheryakovSterkhovaetal.2008, author = {Shainyan, Bagrat A. and Meshcheryakov, Vladimir I. and Sterkhova, I. V. and Kelling, Alexandra and Schilde, Uwe}, title = {Structure of the molecule of 1,2-bis(1-ethyl-1 H -1,2,3-triazol-4-yl)diazene 1-oxide in the crystal and in solutions}, issn = {1070-4280}, year = {2008}, abstract = {Reduction of 4-nitro-1-ethyl-1H-1,2,3-triazole with aluminum in alkaline medium resulted in a syn-isomer of 1,2- bis(1-ethyl-1H-1,2,3-triazol-4-yl)diazene 1-oxide. The latter according to the data of X-ray diffraction analysis existed in the crystal as the most stable s-cis,s-trans-conformer, and in solution, as showed NMR data, as a mixture of s-cis,s-trans- and s-trans,s-trans-conformers. The data of quantum-chemical calculations are in agreement with the results of the structural studies.}, language = {en} } @article{MoskalikShainyanAstakhovaetal.2013, author = {Moskalik, Mikhail Yu and Shainyan, Bagrat A. and Astakhova, Vera V. and Schilde, Uwe}, title = {Oxidative addition of trifluoromethanesulfonamide to cycloalkadienes}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2012.10.099}, pages = {705 -- 711}, year = {2013}, abstract = {In the oxidative system (t-BuOCl+NaI) trifluoromethanesulfonamide is regio- and stereoselectively added to only one double bond of cyclopentadiene and 1,3-cyclohexadiene giving rise to 1,1,1-trifluoro-N-(5-iodocyclopent-2-en-1-yl)methanesulfonamide 7 and trans-N,N'-cyclohex-3-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 8. The structure of 7 and 8 was determined by X-ray, NMR, and MS. With 1,4-cyclohexadiene, addition to both double bonds occurs with the formation of N,N'-(4-chloro-5-iodocyclohexan-1,2-diyl)bis(1,1,1-trifluoromethanesulfonamide) 9. Under the action of sodium iodide in acetone, the latter product undergoes halogenophilic attack with the reduction of the CHI group and elimination of HCl to give trans-N,N'-cyclohex-4-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 10, whose structure was also determined by X-ray analysis. 1,3,5-Cycloheptatriene under these conditions is oxidized to benzaldehyde and does not react with trifluoromethanesulfonamide.}, language = {en} } @article{KukeMarmodeeEidneretal.2010, author = {Kuke, S. and Marmodee, Bettina and Eidner, Sascha and Schilde, Uwe and Kumke, Michael Uwe}, title = {Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III)}, issn = {0584-8539}, year = {2010}, abstract = {The complexation of Eu(III) by 2-hydroxy benzoic acid (2HB) or glycolic acid (GL) was investigated using steady- state and time-resolved laser spectroscopy. Experiments were carried out in H2O as well as in D2O in the temperature range of View the MathML source. The Eu(III) luminescence spectra and luminescence decay times were evaluated with respect to the temperature dependence of (i) the luminescence decay time ;, (ii) the energy of the View the MathML source transition, (iii) the width of the View the MathML source transition, and (iv) the asymmetry ratio calculated from the luminescence intensities of the View the MathML source and View the MathML source transition, respectively. The differences in ligand-related luminescence quenching are discussed. Based on the temperature dependence of the luminescence decay times an activation energy for the ligand-specific non-radiative deactivation in Eu(III)-2HB or Eu(III)-GL complexes was determined. It is stressed that ligand-specific quenching processes (other than OH quenching induced by water molecules) need to be determined and considered in detail, in order to extract speciation- relevant information from luminescence data (e.g., estimation of the number of water molecules nH2O in the first coordination sphere of Eu(III)). In case of 2HB, conclusions drawn from the evaluation of the Eu(III) luminescence are compared with results of a X-ray structure analysis.}, language = {en} } @article{SchmidtWernerKellingetal.2010, author = {Schmidt, Bernd and Werner, Frank and Kelling, Alexandra and Schilde, Uwe}, title = {The reaction of 3,4-dihydro-2H-pyran with oxalyl chloride : formation and crystal structure analysis of an unexpected bicyclic product}, issn = {0022-152X}, year = {2010}, abstract = {3,4-Dihydro-2-H-pyran and oxalyl chloride react, depending on the conditions, to keto esters, a pyran-3- carboxylic acid or derivatives thereof, or to an hitherto unknown bicyclic acetal containing a vinyl chloride moiety. The structure of the latter product has been unambiguously elucidated by single-crystal X-ray structure analysis. A mechanism for its formation is proposed.}, language = {en} } @article{WessigMatthesSchilde2010, author = {Wessig, Pablo and Matthes, Annika and Schilde, Uwe}, title = {Crystal structure of 3,4-diacetyl-15,21-dioxatetracyclo- [23.4.0.02,7.06,11]nonacosa-1(29),2,4,6,8,10,25,27- octaene- 14,22-dione{\`u}water (1:2), C31H32O6 · 2H2O}, issn = {1433-7266}, year = {2010}, language = {en} } @article{WessigMatthesSchildeetal.2013, author = {Wessig, Pablo and Matthes, Annika and Schilde, Uwe and Kelling, Alexandra}, title = {Asymmetric synthesis of (1,5)Naphthalenophanes by Dehydro-Diels-Alder reaction}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201201594}, pages = {2123 -- 2129}, year = {2013}, abstract = {An asymmetric variant of the dehydro-Diels-Alder (DDA) reaction has been developed and applied in the atropselective synthesis of various (1,5)naphthalenophanes. Whereas the suitability of the photochemically induced DDA (PDDA) was limited, the thermally induced DDA provided the desired product, depending on the chiral auxiliary used and the length of the linker, with nearly perfect stereoselectivity. Furthermore, the mechanism of the DDA was investigated by means of DFT calculations, and a stepwise mechanism involving 1,4-biradicals was suggested.}, language = {en} } @article{UhlemannFriedrichHinscheetal.1995, author = {Uhlemann, Erhard and Friedrich, Alwin and Hinsche, Gerald and Mickler, Wulfhard and Schilde, Uwe}, title = {Komplexbildung und Metallextraktion mit heterocyclischen ß-Dicarbonylverbindungen im Vergleich : Struktur von 3-Phenyl-4-benzoyl-isoxazol-5-on}, year = {1995}, language = {de} } @article{UhlemannSchildeKraudeltetal.1995, author = {Uhlemann, Erhard and Schilde, Uwe and Kraudelt, Heide and Gohlke, Ulrich}, title = {Selectivity of amidoxime polymers for the sorption of gallate}, year = {1995}, language = {en} } @article{UhlemannKraudeltHinscheetal.1995, author = {Uhlemann, Erhard and Kraudelt, Heide and Hinsche, Gerald and Schilde, Uwe}, title = {Struktur von Bis(3-phenyl-4-benzoyl-isoxazol-5-onato)kupfer(II)}, year = {1995}, language = {de} } @article{UhlemannLudwigHefeleetal.1995, author = {Uhlemann, Erhard and Ludwig, Eberhard and Hefele, Heike and Friedrich, Alwin and Kallies, Bernd and Schilde, Uwe and Hahn, Ekkehardt}, title = {Reaktionen und thermisches Verhalten oxofreier Vanadium(IV)-Komplexe. Kristallstrukturen von Methoxo- oxo[thenoyltrifluoraceton-salicylhydrazo-nato(2-)]vanadium(V) und Methoxo-oxo[benzoylaceton-salicylhydra-zonato(2- )]vanadium(V)}, year = {1995}, language = {de} } @article{UhlemannSchildeBansseetal.1995, author = {Uhlemann, Erhard and Schilde, Uwe and Banße, Wolfgang and Ludwig, Eberhard}, title = {Crystal structure of bis(1,3-diphenyl-1,3-dionato)oxo-vanadium(IV), C30H2205V}, issn = {0044-2968}, year = {1995}, language = {en} } @article{UhlemannSchildeHefeleetal.1994, author = {Uhlemann, Erhard and Schilde, Uwe and Hefele, Heike and Ludwig, Eberhard}, title = {Crystal and molecular structure of 2,2'-dihydroxyazobenzene}, issn = {0023-4753}, year = {1994}, language = {en} } @article{UhlemannLudwigHefeleetal.1994, author = {Uhlemann, Erhard and Ludwig, Eberhard and Hefele, Heike and Schilde, Uwe}, title = {Komplexe von Vanadium und Titan mit 2,2'-Dihydroxy-azobenzen : Kristallstrukturen von 2,2'- Dihydroxy-azobenzenato(2-)oxo-methoxo-methanol-vanadium(V) und {\ae}-Oxo-bis[2,2'-dihy droxy-azobenzenato(2-)]-oxo- vanadium(V)]}, year = {1994}, language = {de} } @article{MeshcheryakovMoskalikKellingetal.2008, author = {Meshcheryakov, Vladimir I. and Moskalik, Mikail Yu. and Kelling, Alexandra and Schilde, Uwe and Ushakov, Igor A. and Shainyan, Bagrat A.}, title = {Oxymethylation of trifluoromethanesulfonamide with paraformaldehyde in ethyl acetate}, issn = {1070-4280}, doi = {10.1134/S1070428008020206}, year = {2008}, abstract = {Acid-catalyzed reaction of trifluoromethanesulfonamide with paraformaldehyde in ethyl acetate led to the formation of oxymethylated products that did not form in the reaction carried out in sulfuric acid. Following products were obtained: 5-trifluoromethylsulfonyl-1,3-dioxazinane, 3,7-bis-(trifluoromethylsulfonyl)-1,5,3,7-dioxadiazocane, and a complex of trifluoromethanesulfonamide with 2,4,8,10-tetraoxospiro[5,5]undecene, 1:1. The spiroring resulted from the cyclization of pentaerythritol under the action of formaldehyde. The pentaerythritol formed in its turn by oxymethylation of the methyl group of ethyl acetate with paraformaldehyde followed by the reduction of the COOEt group into CH2 OH by the formaldehyde.}, language = {en} } @article{RudershausenDrexlerBansseetal.2007, author = {Rudershausen, S. and Drexler, Hans-Joachim and Banße, Wolfgang and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-Joachim}, title = {Three polymorphs of bis(5-methylthio-1,2-dithiole-3-thione)-disulfide}, doi = {10.1002/crat.200610776}, year = {2007}, abstract = {The title compound, bis(5-methylthio-1,2-dithiole-3-thione)-disulfide, was yielded for the first time as by- product of the reaction of nickel(II) and cobalt(II) ions with 5-methylthio-1,2-dithiole-3-thione-4-thiolate. The compound can be obtained directly by oxidation of the ammonium salt of the ligand. C8H6S10 forms three polymorphs: (I), which crystallizes in the orthorhombic space group P212121, (II) and (III), which crystallize in the monoclinic space groups P21/c and P21/n, respectively. The crystal and molecular structures are presented here. The determination of the absolute configuration of (I) indicated the P-helical enantiomer. In contrast to this, the crystals of (II) und (III) are racemic, containing P- and M-helical enantiomers. The polymorphs differ in the kind of skewing around the disulfide bond and of the positions of the both dithiole rings to the S-S-moiety}, language = {en} } @article{UhlemannSchildeMickler1996, author = {Uhlemann, Erhard and Schilde, Uwe and Mickler, Wulfhard}, title = {Crystal structure of bis(1-phenyldecane-1,3-dionato)-copper(II), Cu(C16H21O2)2}, issn = {0044-2968}, year = {1996}, language = {en} } @article{ElamparuthiLinkerKellingetal.2009, author = {Elamparuthi, Elangovan and Linker, Torsten and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of methyl 3,4-di-O-benzyl-2-deoxy-2-C-nitromethyl-alpha-D-arabinopyranoside, C21H25NO6}, issn = {1433-7266}, doi = {10.1524/ncrs.2009.0027}, year = {2009}, language = {en} } @phdthesis{ElamparuthiLinkerKellingetal.2009, author = {Elamparuthi, Elangovan and Linker, Torsten and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of methyl 3,4,6-tri-O-benzyl-2-deoxy-2-C-nitromethyl-beta-D-galactopyranoside, C29H33NO7}, issn = {1433-7266}, doi = {10.1524/ncrs.2009.0054}, year = {2009}, language = {en} } @article{SieboldKorabikSchildeetal.2008, author = {Siebold, Matthias and Korabik, Maria and Schilde, Uwe and Mrozinski, Jerzy and Strauch, Peter}, title = {Pentanuclear heterobimetallic 3d-4f complexes of Ln2M3-type - structure and magnetism}, issn = {0366-6352}, year = {2008}, abstract = {From a series of pentanuclear, heterobimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3] · xH2O, four complexes (Ln = Gd(III) with n = 4; Ln = Dy(III), Ho(III), or Er(III), with n = 5; x = 9-12; dto = 1,2- dithiooxalate) were studied due to their large magnetic moments (up to 14.65 B.M.). The magnetic properties of these complete series were measured at room temperature and the temperature dependent magnetic properties of the complexes Gd2Ni3, Dy2Ni3, Ho2Ni3, and Er2Ni3 were studied at room temperature down to 1.8 K. Whereas the intramolecular metal- metal distances were rather long (Ni1-Ni2: 11.0-11.5 {\AA}; Ln-Ni: 6.0-6.3 {\AA}), relatively short intermolecular metal-metal distances (Ni1-Ni2;: 3.5 {\AA}; Er-Er;: 6.0 {\AA}) were found in the crystal lattice, giving rise to weak intermolecular metal-metal interactions. These weak spin interactions were also supported by the EPR spectrum of a powdered sample of the diamagnetically undiluted Gd2Ni3 complex.}, language = {en} } @article{ShainyanSuslovaSchilde2008, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Schilde, Uwe}, title = {Crystal structures and theoretical calculations of trans -2,4,4-trimethyl-4-silathiane 1-oxide and 4,4-dimethyl- 4-silathiane 1,1-dioxide}, issn = {1040-0400}, year = {2008}, abstract = {The crystal and molecular structures of trans-2,4,4-trimethyl-4-silathiane 1-oxide 1 and 4,4-dimethyl-4- silathiane 1,1-dioxide 2 were determined by single crystal X-ray diffraction. Both compounds have the chair conformation with the 2-Me and the S=O group in compound 1 occupying the equatorial positions. The DFT (B3LYP/6-311G(d,p)) and MP2 (MP2/6-311G(d,p)) theoretical calculations nicely reproduce the X-ray experimental geometry. The obtained results are discussed in connection with the electronic and structural properties of the compounds.}, language = {en} } @article{ZehmFudickarHansetal.2008, author = {Zehm, Daniel and Fudickar, Werner and Hans, Melanie and Schilde, Uwe and Kelling, Alexandra and Linker, Torsten}, title = {9,10-Diarylanthracenes as molecular switches : syntheses, properties, isomerisations and their reactions with singlet oxygen}, issn = {0947-6539}, year = {2008}, abstract = {A series of 9,10-diarylanthracenes with various substituents at the ortho positions have been synthesised by palladium-catalysed cross-coupling reactions. Such compounds exhibit interesting physical properties and can be applied as molecular switches. Despite the high steric demand of the substituents, products were formed in moderate-to-good yields. In some cases, microwave conditions further improved yields. Bis-coupling afforded two isomers (syn and anti) that do not interconvert at room temperature. These products were easily separated and their relative stereochemistries were unequivocally assigned by NMR spectroscopy and X-ray analysis. The syn and anti isomers exhibit different physical properties (e.g., melting points and solubilities) and interconversion by rotation around the aryl-aryl axis commences at <100 °C for fluoro-substituted diarylanthracenes and at >300 °C for alkyl- or alkoxy-substituted diarylanthracenes. The reactions with singlet oxygen were studied separately and revealed different reactivities and reaction pathways. The yields and reactivities depend on the size and electronic nature of the substituents. The anti isomers form the same 9,10-endoperoxides as the syn species, occasionally accompanied by unexpected 1,4-endoperoxides as byproducts. Thermolysis of the endoperoxides exclusively yielded the syn isomers. The interesting rotation around the aryl-aryl axis allows the application of 9,10-diarylanthracenes as molecular switches, which are triggered by light and air under mild conditions. Finally, the oxygenation and thermolysis sequence provides a simple, synthetic access to a single stereoisomer (syn) from an unselective coupling step.}, language = {en} } @article{UhlemannDuvinageSchilde2008, author = {Uhlemann, Jacqueline and Duvinage, Brigitte and Schilde, Uwe}, title = {Kontexte und Kompetenzen : Komplexverbindungen experimentell erkunden}, issn = {1617-5638}, year = {2008}, language = {de} } @article{AwadConradKochetal.2010, author = {Awad, Duha Jawad and Conrad, Franziska and Koch, Andreas and Schilde, Uwe and Poeppl, Andreas and Strauch, Peter}, title = {1,10-phenanthroline-dithiolate mixed ligand transition metal complexes : synthesis, characterization and EPR spectroscopy}, issn = {0020-1693}, doi = {10.1016/j.ica.2010.01.021}, year = {2010}, abstract = {A series of new N2S2 mixed ligand transition metal complexes, where N-2 is phenanthroline and S-2 is 1,2- dithiooxalate (dto) or 1,2-dithiosquarate (dtsq), has been synthesized and characterized. IR spectra reveal that the 1,2- dithiolate ligands are coordinated via the sulfur atoms forming a N2S2 coordination sphere. The copper(II) complex [Cu(phen)(dto)] was studied by EPR spectroscopy as a diamagnetically diluted powder. The diamagnetic dilution resulted from doping of the copper complex into the isostructural host lattice of the nickel complex [Ni(phen)(dto)]. The electronic situation in the frontier orbitals of the copper complex calculated from the experimental data is compared to the results of EHT and DFT calculations. Furthermore, one side product, chlorobis(1,10-phenanthroline)copper(I) ethanol solvate hydrate [(phen)(2)CuCl]center dot C2H5OH center dot H2O, was formed by a reduction process and characterized by X-ray diffraction. In the crystal packing one-dimensional columns of dimers are formed, stabilized by significant pi-pi interactions.}, language = {en} } @article{LinkerFudickarKellingetal.2013, author = {Linker, Torsten and Fudickar, Werner and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of dimethyl 1,4-dioxaspiro[4,5]dec-6-ene-(8R)-[(3,5-dinitrobenzoyl)oxa]-(2R,3R)-dica rboxylate, C19H18N2O12}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {228}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2013.0123}, pages = {241 -- 242}, year = {2013}, abstract = {C19H18N2O12, orthorhombic, P2(1)2(1)2(1) (no. 19), a = 6.2472(6) angstrom, b = 17.576(2) angstrom, c = 18.848(3) angstrom, V = 2069.6 angstrom(3), Z = 4, R-gt(F) = 0.0393, wR(ref)(F-2) = 0.0694, T = 210 K.}, language = {en} } @article{LinkerBramborgKellingetal.2013, author = {Linker, Torsten and Bramborg, Andrea and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of trans-1,4-di-(2-(allyloxyethyl)-cyclohexa-2,5-diene-1,4-dicarboxylic acid, C18H24O6}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {228}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2013.0124}, pages = {243 -- 244}, year = {2013}, abstract = {C18H24O6, triclinic, P (1) over bar (no. 2), a = 5.726(1) angstrom, b = 8.845(2) angstrom, c = 9.557(2) angstrom, alpha = 105.27(1)degrees, beta = 102.76(1)degrees, gamma = 103.49(1)degrees, V = 433.0 angstrom(3), Z = 1, R-gt(F) = 0.0412, wR(ref)(F-2) = 0.1075, T = 210 K.}, language = {en} } @article{UhlemannSchildeWeller1995, author = {Uhlemann, Erhard and Schilde, Uwe and Weller, Frank}, title = {Calcium- und Bariumkomplexe mit 1-Phenyl-3-methyl-4-benzoyl-pyrazol-5-on}, year = {1995}, language = {de} } @article{UhlemannKraudeltSchilde1995, author = {Uhlemann, Erhard and Kraudelt, Heide and Schilde, Uwe}, title = {Struktur und ausgew{\"a}hlte Reaktionen von ReCl4(PPh3)2}, year = {1995}, language = {de} } @phdthesis{MirskovaAdamovichMirskovetal.2013, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Reaction of pharmacological active tris-(2-hydroxyethyl) ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2: first conversion of a protic ionic liquid into metallated ionic liquid}, doi = {10.1186/1752-153X-7-34}, year = {2013}, language = {en} } @article{AwadKochMickleretal.2012, author = {Awad, Duha Jawad and Koch, Andreas and Mickler, Wulfhard and Schilde, Uwe and Strauch, Peter}, title = {EPR spectroscopy of 4, 4 '-Bis(tert-butyl)-2, 2 '-bipyridine-1, 2-dithiolatocuprates(II) in host lattices with different coordination geometries}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {638}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201100517}, pages = {965 -- 975}, year = {2012}, abstract = {A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4'-bis(tert-butyl)-2, 2'-bipyridine (tBu2bpy) and S2 =1, 2-dithiooxalate, (dto), 1, 2-dithiosquarate, (dtsq), maleonitrile-1, 2-dithiolate, or 1, 2-dicyanoethene-1, 2-dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi-occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X-ray structure analysis to prove the coordination geometry. The complex crystallizes in a square-planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) angstrom, b = 18.266(2) angstrom, c = 12.6566(12) angstrom, beta = 112.095(7)degrees. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.}, language = {en} } @article{ShainyanTolstikovaSchilde2012, author = {Shainyan, Bagrat A. and Tolstikova, Ljudmila L. and Schilde, Uwe}, title = {Simple methods for the preparation of N-triflyl guanidines and the structure of compounds with the CF3SO2N=C-N fragment}, series = {Journal of fluorine chemistry}, volume = {135}, journal = {Journal of fluorine chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0022-1139}, doi = {10.1016/j.fluchem.2011.12.004}, pages = {261 -- 264}, year = {2012}, abstract = {Two novel and simple approaches to N-triflyl guanidines are elaborated. Owing to very strong conjugation the formally double C=N bond of TIN=C(NHR)(2) is longer than the formally single N-C bonds. Energetic effect of the triflylgroup on the conjugation in the N-C=N moiety is estimated to be >= 150 kcal/mol.}, language = {en} } @article{SchmidtBergerKellingetal.2011, author = {Schmidt, Bernd and Berger, Ren{\´e} and Kelling, Alexandra and Schilde, Uwe}, title = {Pd-Catalyzed [2+2+1] coupling of alkynes and arenes phenol diazonium salts as mechanistic trapdoors}, series = {Chemistry - a European journal}, volume = {17}, journal = {Chemistry - a European journal}, number = {25}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0947-6539}, doi = {10.1002/chem.201100609}, pages = {7032 -- 7040}, year = {2011}, abstract = {Alkynes and phenol diazonium salts undergo a Pd-catalyzed [2+2+1] cyclization reaction to spiro[4,5]decatetraene-7-ones. This structure was confirmed for one example by X-ray single-crystal structure analysis. The reaction is believed to proceed through oxidative addition of the phenol diazonium cation to Pd(0), subsequent insertion of two alkynes, followed by irreversible spirocyclization.}, language = {en} } @article{AdamovichMirskovaMirskovetal.2011, author = {Adamovich, Sergey N. and Mirskova, Anna N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)}, series = {Chemistry central journal}, volume = {5}, journal = {Chemistry central journal}, number = {17}, publisher = {BioMed Central}, address = {London}, issn = {1752-153X}, doi = {10.1186/1752-153X-5-23}, pages = {4}, year = {2011}, abstract = {The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR ((1)H, (13)C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant.}, language = {en} } @article{SchmidtHoelterKellingetal.2011, author = {Schmidt, Bernd and H{\"o}lter, Frank and Kelling, Alexandra and Schilde, Uwe}, title = {Pd-Catalyzed arylation reactions with phenol diazonium salts application in the synthesis of diarylheptanoids}, series = {The journal of organic chemistry}, volume = {76}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo2002787}, pages = {3357 -- 3365}, year = {2011}, abstract = {The first total synthesis of the natural product (3S,7R)-5,6-dehydro-de-O-methyl centrolobine and various analogues is reported, using a highly regio- and diastereoselective Mizoroki-Heck reaction of phenol diazonium salts and enantiopure dihydropyrans. The assigned relative configuration was confirmed by single-crystal X-ray structure analysis, but a revision of the absolute configuration is proposed based on polarimetric measurement.}, language = {en} } @article{SchmidtElizarovSchildeetal.2015, author = {Schmidt, Bernd and Elizarov, Nelli and Schilde, Uwe and Kelling, Alexandra}, title = {Dual Role of Acetanilides: Traceless Removal of a Directing Group through Deacetylation/Diazotation and Palladium-Catalyzed C-C-Coupling Reactions}, series = {The journal of organic chemistry}, volume = {80}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b00272}, pages = {4223 -- 4234}, year = {2015}, abstract = {The acetamide group enables regioselective oxidative ortho-C-H activation reactions, such as Pd-catalyzed acylation. The synthetic utility of these transformations can be significantly enhanced by using the acetamide as a quasi-leaving group in a subsequent conventional Pd-catalyzed coupling or cross-coupling reaction. The concept is illustrated herein for the synthesis of o-alkenyl- and o-arylphenones, which have potential for the synthesis of arylated aromatic heterocycles.}, language = {en} } @article{SetoMaDavisetal.2012, author = {Seto, Jong and Ma, Yurong and Davis, Sean A. and Meldrum, Fiona and Gourrier, Aurelien and Kim, Yi-Yeoun and Schilde, Uwe and Sztucki, Michael and Burghammer, Manfred and Maltsev, Sergey and J{\"a}ger, Christian and C{\"o}lfen, Helmut}, title = {Structure-property relationships of a biological mesocrystal in the adult sea urchin spine}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {109}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {10}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1109243109}, pages = {3699 -- 3704}, year = {2012}, abstract = {Structuring overmany length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, showhow Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of howcrystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.}, language = {en} } @article{SchmidtKrehlKellingetal.2012, author = {Schmidt, Bernd and Krehl, Stefan and Kelling, Alexandra and Schilde, Uwe}, title = {Synthesis of 8-Aryl-Substituted Coumarins based on Ring-Closing Metathesis and Suzuki-Miyaura coupling - synthesis of a Furyl Coumarin natural product from Galipea panamensis}, series = {The journal of organic chemistry}, volume = {77}, journal = {The journal of organic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo2026564}, pages = {2360 -- 2367}, year = {2012}, abstract = {The synthesis of 7-methoxy-8-(4-methyl-3-furyl)-2H-chromen-2-one, a natural product with antileishmanial activity recently isolated from the plant Galipea panamensis, is described. The key step is a Suzuki-Miyaura coupling of a furan-3-boronic acid and an 8-halocoumarin, which is advantageously synthesized using a ring-closing metathesis reaction. Several non-natural analogues are also available along these lines.}, language = {en} } @article{WessigWawrzinekMoellnitzetal.2011, author = {Wessig, Pablo and Wawrzinek, Robert and Moellnitz, Kristian and Feldbusch, Elvira and Schilde, Uwe}, title = {A new class of fluorescent dyes based on 1,3-benzodioxole and [1,3]-dioxolo[4.5-f]benzodioxole}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {46}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.09.058}, pages = {6192 -- 6195}, year = {2011}, abstract = {We report on synthesis and photophysical properties of a new class of fluorescent dyes. They are characterized by large Stokes-shifts, long fluorescence lifetimes in organic solvents and a pronounced dependency of the fluorescence lifetime on the solvent polarity. Also worthy of note is the high bleaching stability. To provide access to biochemical and medical applications a series of derivatives were prepared, which exhibit specific reactivity towards different biologically relevant functional groups (carboxylic acids, amines, maleimides, N-hydroxysuccinimide esters). Furthermore, two alkynes were prepared, which could be used in 'Click' chemistry.}, language = {en} } @article{SchmidtRiemerSchilde2014, author = {Schmidt, Bernd and Riemer, Martin and Schilde, Uwe}, title = {Chroman-4-ones via microwave-promoted domino claisen rearrangement-oxa-michael addition: Synthesis of tabchromones A and B}, series = {Synlett : accounts and rapid communications in synthetic organic chemistry}, volume = {25}, journal = {Synlett : accounts and rapid communications in synthetic organic chemistry}, number = {20}, publisher = {Thieme}, address = {Stuttgart}, issn = {0936-5214}, doi = {10.1055/s-0034-1379364}, pages = {2943 -- 2946}, year = {2014}, abstract = {Allyl phenyl ethers with a pendant enone substituent undergo, upon microwave irradiation, a domino sequence of Claisen rearrangement and 6-endo-trig-cyclization to furnish functionalized chroman-4-ones. The natural products tabchromones A and B were synthesized via this method.}, language = {en} } @article{MoskalikAstakhovaSchildeetal.2014, author = {Moskalik, Mikhail Yu. and Astakhova, Vera V. and Schilde, Uwe and Sterkhova, Irina V. and Shainyan, Bagrat A.}, title = {Assembling of 3,6-diazabicyclo[3.1.0]hexane framework in oxidative triflamidation of substituted buta-1,3-dienes}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {45}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.09.050}, pages = {8636 -- 8641}, year = {2014}, language = {en} } @article{CoyBarreraCucaSuarezSefkowetal.2012, author = {Coy-Barrera, Ericsson D. and Cuca-Suarez, Luis E. and Sefkow, Michael and Schilde, Uwe}, title = {Cinerin C: a macrophyllin-type bicyclo[3.2.1]octane neolignan from Pleurothyrium cinereum (Lauraceae)}, series = {Acta crystallographica : Section C, Crystal structure communications}, volume = {68}, journal = {Acta crystallographica : Section C, Crystal structure communications}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0108-2701}, doi = {10.1107/S0108270112030946}, pages = {O320 -- +}, year = {2012}, abstract = {The structure of naturally-occurring cinerin C [systematic name: (7S,8R,3'R,4'S,5'R)-Delta(8')-4'-hydroxy-5,5',3'-trimethoxy-3,4-methylenedioxy-2',3',4',5'-tetrahydro-2'-oxo-7.3',8.5'-neolignan], isolated from the ethanol extract of leaves of Pleurothyrium cinereum (Lauraceae), has previously been established by NMR and HRMS spectroscopy, and its absolute configuration established by circular dichroism measurements. For the first time, its crystal strucure has now been established by single-crystal X-ray analysis, as the monohydrate, C22H26O7 center dot H2O. The bicyclooctane moiety comprises fused cyclopentane and cyclohexenone rings which are almost coplanar. An intermolecular O-H center dot center dot center dot O hydrogen bond links the 4'-OH and 5'-OCH3 groups along the c axis.}, language = {en} } @article{ShainyanMoskalikAstakhovaetal.2014, author = {Shainyan, Bagrat A. and Moskalik, Mikhail Yu and Astakhova, Vera V. and Schilde, Uwe}, title = {Novel design of 3,8-diazabicyclo[3.2.1]octane framework in oxidative sulfonamidation of 1,5-hexadiene}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {30}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.04.095}, pages = {4547 -- 4551}, year = {2014}, abstract = {1,5-Hexadiene reacts with trifluoromethanesulfonamide in the oxidative system (t-BuOCl+Nal) to give trans-2,5-bis(iodomethyl)-1-(trifluoromethylsulfonyl)pyrrolidine 5 and 3,8-bis(trifluoromethylsulfonyl)-3,8-diazabicyclo[3.2.1]octane 6. With arenesulfonamides ArSO2NH2 (Ar=Ph, Tol), the reaction stops at the formation of the trans and cis isomers of 2,5-bis(iodomethyl)-1-(arenesulfonyl)pyrrolidine 7 and 8 (1:1). The cis isomers of 7 and 8 do not undergo cyclization to the corresponding 3,8-disubstituted 3,8-diazabicyclo[3.2.1]octanes. The reaction with triflamide represents the first example of one-pot two-step route to 3,8-diazabicyclo[3.2.1]octane system. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MoskalikShainyanSchilde2011, author = {Moskalik, Mikail Yu. and Shainyan, Bagrat A. and Schilde, Uwe}, title = {Reaction of trifluoromethanesulfonamide with alkenes and cycloocta-1,5-diene under oxidative conditions direct assembly of 9-heterobicyclo[4.2.1]nonanes}, series = {Russian journal of organic chemistry}, volume = {47}, journal = {Russian journal of organic chemistry}, number = {9}, publisher = {Pleiades Publ.}, address = {New York}, issn = {1070-4280}, doi = {10.1134/S1070428011090016}, pages = {1271 -- 1277}, year = {2011}, abstract = {Reactions of trifluoromethanesulfonamide with alpha-methylstyrene, 2-methylpent-1-ene, and cycloocta-1,5-diene in the system t-BuOCl-NaI were studied. In the reaction with alpha-methylstyrene 1-iodo-2-phenylpropan-2-ol was the only isolated product. The reaction with 2-methylpent-1-ene gave a mixture of N,N'-(2-methylpentane-1,2-diyl)bis(trifluoromethanesulfonamide), trifluoro-N-(2-hydroxy-2-methylpentyl)-methanesulfonamide, and N,N'-[oxybis(2-methylpentan-2,1-diyl)]bis(trifluoromethanesulfonamide). Trifluoromethanesulfonamide reacted with cycloocta-1,5-diene to produce a mixture of 2,5-diiodo-9-(trifluoromethylsulfonyl)-9-azabicyclo[4.2.1]nonane and 2,5-diiodo-9-oxabicyclo[4.2.1]nonane; this reaction may be regarded as the first example of direct assembly of bicyclononane skeleton.}, language = {en} } @article{WessigPickSchilde2011, author = {Wessig, Pablo and Pick, Charlotte and Schilde, Uwe}, title = {First example of an atropselective dehydro-Diels-Alder (ADDA) reaction}, series = {Tetrahedron letters}, volume = {52}, journal = {Tetrahedron letters}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2011.06.024}, pages = {4221 -- 4223}, year = {2011}, abstract = {A new concept of a stereoselective synthesis of axially chiral biaryls, formed in the course of the dehydro-Diels-Alder (DDA) reaction, has been disclosed. It is based on asymmetric induction of the newly formed chirality axis by a chirality center, which is present in the two synthesized DDA reactants. Depending on the different length of the linkers joining the alkyne moieties the DDA reaction may be triggered photochemically or thermally, where only the thermal variant was stereoselective.}, language = {en} } @article{SchmidtStaudeKellingetal.2011, author = {Schmidt, Bernd and Staude, Lucia and Kelling, Alexandra and Schilde, Uwe}, title = {A Cross-Metathesis-Conjugate addition route to enantiopure gamma-Butyrolactams and gamma-Lactones from a C-2-Symmetric Precursor}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {9}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1434-193X}, doi = {10.1002/ejoc.201001528}, pages = {1721 -- 1727}, year = {2011}, abstract = {A protected derivative of (3R, 4R)-hexa-1,5-diene-3,4-diol, a conveniently accessible C-2-symmetric building block, undergoes single or double cross metathesis with methyl acryl-ate. The cross metathesis products are amenable to stereoselective conjugate addition reactions and can be converted into either gamma-butyrolactones or gamma-lactams.}, language = {en} } @article{TraegerKellingSchildeetal.2012, author = {Tr{\"a}ger, J. and Kelling, A. and Schilde, Uwe and Holdt, H. -J.}, title = {rac-1-[(2-Methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene and its PdCl2 complex}, series = {Acta crystallographica : Section C, Crystal structure communications}, volume = {68}, journal = {Acta crystallographica : Section C, Crystal structure communications}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0108-2701}, doi = {10.1107/S0108270112032192}, pages = {M238 -- +}, year = {2012}, abstract = {As an extension of recent findings on the recovery of palladium with dithioether extractants, single crystals of the chelating vicinal thioether sulfoxide ligand rac-1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene, C12H18O3S2, (I), and its square-planar dichloridopalladium complex, rac-dichlorido{1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene-?2S,S'}palladium(II), [PdCl2(C12H18O3S2)], (II), have been synthesized and their structures analysed. The molecular structure of (II) is the first ever characterized involving a dihalogenidePdII complex in which the palladium is bonded to both a thioether and a sulfoxide functional group. The structural and stereochemical characteristics of the ligand are compared with those of the analogous dithioether compound [Traeger et al. (2012). Eur. J. Inorg. Chem. pp. 23412352]. The sulfinyl O atom suppresses the electron-pushing and mesomeric effect of the SC...;CS unit in ligand (I), resulting in bond lengths significantly different than in the dithioether reference compound. In contrast, in complex (II), those bond lengths are nearly the same as in the analogous dithioether complex. As observed previously, there is an interaction between the central PdII atom and the O atom that is situated above the plane.}, language = {en} } @article{WessigMoellnitzKellingetal.2011, author = {Wessig, Pablo and M{\"o}llnitz, Kristian and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of 1r,2c,3c,4t,5t,6t-1,2,3,4,5,6-hexakis-trimethylsilanyloxy-cyclohexane, C24H60O6Si6}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {226}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2011.0105}, pages = {228 -- 230}, year = {2011}, abstract = {C24H60O6Si6, triclinic, P (1) over bar (no. 2), a = 11.307(2) angstrom, b = 12.159(2) angstrom, = 16.576(2) angstrom, alpha = 109.47(1)degrees, beta = 94.64(1)degrees, gamma = 111.65(1)degrees, V = 1942.3 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.118, T = 210 K.}, language = {en} } @article{AwadSchildeStrauch2011, author = {Awad, Duha Jawad and Schilde, Uwe and Strauch, Peter}, title = {4,4 '-Bis(tert-butyl)-2,2 '-bipyridinedichlorometal(II) - Synthesis, structure and EPR spectroscopy}, series = {Inorganica chimica acta : the international inorganic chemistry journal}, volume = {365}, journal = {Inorganica chimica acta : the international inorganic chemistry journal}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0020-1693}, doi = {10.1016/j.ica.2010.08.035}, pages = {127 -- 132}, year = {2011}, abstract = {Due to the better solubility of the 4,4'-substituted bipyridine ligand a series of 4,4'0-bis(tert-butyl)-2,2'-bipyridinedichlorometal(II) complexes, [M(tbbpy)Cl(2)], with M = Cu, Ni, Zn, Pd, Pt was synthesised and characterised. The blue copper complex 4,4'-bis(tert-butyl)-2,2'-bipyridinedichlorocopper(II) was isolated in two different polymorphic forms, as prisms 1 with a solvent inclusion and solvent-free as needles 2. Both structures were determined by X-ray structure analysis. They crystallise in the monoclinic space group P2(1)/c with four molecules in the unit cell, but with different unit cells and packing motifs. Whereas in the prisms 1, with the unit cell parameters a = 12.1613(12), b = 10.6363(7), c = 16.3074(15) angstrom, eta = 94.446(8)degrees, the packing is dominated by intra-and intermolecular hydrogen bonds, in the needles 2, with a = 7.738(1), b = 18. 333(2), c = 13.291(3) angstrom, beta = 97.512(15)degrees, only intramolecular hydrogen bonds appear and the complex molecules are arranged in columns which are stabilised by p-p-stacking interactions. In both complexes the copper has a tetrahedrally distorted coordination sphere. These copper complexes were also studied by EPR spectroscopy in solution, as frozen glass and diamagnetically diluted powder with the analogue [Pd(tbbpy)Cl(2)] as host lattice.}, language = {en} } @article{SchmidtRiemerSchilde2015, author = {Schmidt, Bernd and Riemer, Martin and Schilde, Uwe}, title = {Tandem Claisen Rearrangement/6-endo Cyclization Approach to Allylated and Prenylated Chromones}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {34}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201501151}, pages = {7602 -- 7611}, year = {2015}, abstract = {Allyl, dimethylallyl and prenyl ethers derived from o-acyl-phenols reacted upon microwave irradiation to form C-allylated or -prenylated chromone derivatives, depending on the substitution pattern of the arene and the allyl substituent. The reaction proceeds through a tandem Claisen rearrangement and 6-endo-trig or 6-endo-dig cyclization sequence. For prenyl ethers, the tandem sequence can be extended by a Cope rearrangement to furnish 6-prenylchromones. The method is potentially useful for the synthesis of natural products and drugs.}, language = {en} } @article{StrauchKossmannKellingetal.2016, author = {Strauch, Peter and Kossmann, Alexander and Kelling, Alexandra and Schilde, Uwe}, title = {EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice - structure and spectroscopy}, series = {Chemical papers}, volume = {70}, journal = {Chemical papers}, publisher = {De Gruyter}, address = {Berlin}, issn = {0366-6352}, doi = {10.1515/chempap-2015-0154}, pages = {61 -- 68}, year = {2016}, abstract = {EPR spectroscopy is a well suited analytical tool to monitor the electronic situation around paramagnetic metal centres as copper(II) and therefore the structural influences on the paramagnetic ion. 1,2-Dithiosquaratometalates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. Synthesis and characterisation of bis(benzyltributylammonium)1,2-dithiosquaratonickelate(II), (BzlBu(3)N)(2)[Ni(dtsq)(2)], and bis(benzyltributylammonium)1,2-dithiosquaratocuprate(II), (BzlBu(3)N)(2)[Cu(dtsq)(2)], with benzyltributylammonium as the counter ion is reported and the X-ray structures of two complexes, (BzlBu(3)N)(2)[Ni(dtsq)(2)] and (BzlBu(3)N)(2)[Cu(dtsq)(2)], are presented. Both complexes, crystallising in the monoclinic space group P2(1)/c, are isostructural with only small differences in the coordination sphere due to the different metal ions. The diamagnetic nickel complex is therefore well suited as a host lattice for the paramagnetic Cu(II) complex to measure EPR for additional structural information. (c) 2015 Institute of Chemistry, Slovak Academy of Sciences}, language = {en} } @article{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, series = {Acta crystallographica, Section E, Crystallographic communications}, volume = {72}, journal = {Acta crystallographica, Section E, Crystallographic communications}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2056-9890}, doi = {10.1107/S2056989016018727}, pages = {1839 -- +}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo-[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7-hydroxyimino-2-oxobicyclo[4.2.0] octan-4-yl acetate, C11H15NO6, (II), and [(3aR, 5R, 6R, 7R, 7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5-yl] methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @article{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, series = {New journal of chemistry}, volume = {40}, journal = {New journal of chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c5nj03337c}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andre and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and g(perpendicular to)) of the tensors could be determined and information on the structural changes in the [CuBr4](2-) anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @misc{MirskovaAdamovichMirskovetal.2017, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401099}, pages = {5}, year = {2017}, abstract = {The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H + N(CH 2 CH 2 OH) 3 ∙ ( - OOCCH 2 SC 6 H 4 Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H + N(CH 2 CH 2 OH) 3 ] 2 ∙ [M(OOCCH 2 SC 6 H 4 Cl-4) 2 Cl 2 ] 2- , M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH 2 SC 6 H 4 Cl-4) 2 ∙ 2H 2 O (4). Unlike 2, compound 3 gives crystals [N(CH 2 CH 2 OH) 3 ] 2 Ni 2+ · [ - OOCCH 2 SC 6 H 4 Cl-4] 2 (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 → 3 → 5).}, language = {en} }