@article{LandfesterMontenegroScherfetal.2002, author = {Landfester, Katharina and Montenegro, Rivelino V. D. and Scherf, Ullrich and G{\"u}nter, R. and Asawapirom, Udom and Patil, S. and Neher, Dieter and Kietzke, Thomas}, title = {Semiconducting polymer nanospheres in aqeous dispersion prepared by a miniemulsion process}, year = {2002}, language = {en} } @article{ZenNeherSilmyetal.2005, author = {Zen, Achmad and Neher, Dieter and Silmy, Kamel and Hollander, A. and Asawapirom, Udom and Scherf, Ullrich}, title = {Improving the performance of organic field effect transistor by optimizing the gate insulator surface}, year = {2005}, abstract = {The effect of oxygen plasma treatment and/or silanization with hexamethyldisilazane (HMDS) on the surface chemistry and the morphology of the SiO2-gate insulator were studied with respect to the performance of organic field effect transistors. Using X-ray photoelectron spectroscopy (XPS), it is shown that silanization leads to the growth of a polysiloxane interfacial layer and that longer silanization times increase the thickness of this layer. Most important, silanization reduces the signal from surface contaminations such as oxidized hydrocarbon molecules. In fact, the lowest concentration of these contaminations was found after a combined oxygen plasma/silanization treatment. The results of these investigations were correlated with the characteristic device parameters of polymer field effect transistors with poly(3-hexylthiophene)s as the semiconducting layer. We found that the field effect mobility correlates with the concentration of contaminations as measured by XPS. We, finally, demonstrate that silanization significantly improves the operational stability of the device in air compared to the untreated devices}, language = {en} } @article{DaeublerGlowackiScherfetal.1999, author = {D{\"a}ubler, Thomas Karl and Glowacki, Ireneusz and Scherf, Ullrich and Ulanski, J. and H{\"o}rhold, Hans-Heinrich and Neher, Dieter}, title = {Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2}, year = {1999}, language = {en} } @article{GhaniOpitzPingeletal.2015, author = {Ghani, Fatemeh and Opitz, Andreas and Pingel, Patrick and Heimel, Georg and Salzmann, Ingo and Frisch, Johannes and Neher, Dieter and Tsami, Argiri and Scherf, Ullrich and Koch, Norbert}, title = {Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers}, series = {Journal of polymer science : B, Polymer physics}, volume = {53}, journal = {Journal of polymer science : B, Polymer physics}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23631}, pages = {58 -- 63}, year = {2015}, abstract = {The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design.}, language = {en} } @article{BagnichImBassleretal.2004, author = {Bagnich, Sergey A. and Im, C. and Bassler, H. and Neher, Dieter and Scherf, Ullrich}, title = {Energy transfer in a ladder-type methyl-poly(para-phenylene) doped by Pt(II)octaethylporphyrin}, issn = {0301-0104}, year = {2004}, abstract = {The luminescence of a ladder-type methyl-poly(para-phenylene) (MeLPPP) doped by platinum-porphyrin dye PtOEP covering the concentration 10(-3) to 5\% by weight has been measured employing cw and transient techniques. Upon excitating into the range of absorption of the host strong phosphorescence of the dopant is observed. Possible ways of populating of the dopant triplet state are considered. It is shown that the main channel is singlet-singlet energy transfer among chromophor groups of the polymer followed by Forster-type transfer to the guest and subsequent intersystem crossing. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} } @article{ZenBilgeGalbrechtetal.2006, author = {Zen, Achmad and Bilge, Askin and Galbrecht, Frank and Alle, Ronald and Meerholz, Klaus and Grenzer, J{\"o}rg and Neher, Dieter and Scherf, Ullrich and Farrell, Tony}, title = {Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform}, doi = {10.1021/Ja0573357}, year = {2006}, language = {en} } @article{AsawapiromBulutFarrelletal.2004, author = {Asawapirom, Udom and Bulut, F. and Farrell, Tony and Gadermaier, C. and Gamerith, S. and G{\"u}ntner, Roland and Kietzke, Thomas and Patil, S. and Piok, T. and Montenegro, Rivelino V. D. and Stiller, Burkhard and Tiersch, Brigitte and Landfester, Katharina and List, E. J. W. and Neher, Dieter and Torres, C. S. and Scherf, Ullrich}, title = {Materials for polymer electronics applications semiconducting polymer thin films and nanoparticles}, issn = {1022-1360}, year = {2004}, abstract = {The paper presents two different approaches to nanostructured semiconducting polymer materials: (i) the generation of aqueous semiconducting polymer dispersions (semiconducting polymer nanospheres SPNs) and their processing into dense films and layers, and (ii) the synthesis of novel semiconducting polyfluorene-block-polyaniline (PF-b-PANI) block copolymers composed of conjugated blocks of different redox potentials which form nanosized morphologies in the solid state}, language = {en} } @article{AlbrechtTumblestonJanietzetal.2014, author = {Albrecht, Steve and Tumbleston, John R. and Janietz, Silvia and Dumsch, Ines and Allard, Sybille and Scherf, Ullrich and Ade, Harald W. and Neher, Dieter}, title = {Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz500457b}, pages = {1131 -- 1138}, year = {2014}, abstract = {We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer.}, language = {en} } @article{HoermannZeiskeParketal.2019, author = {H{\"o}rmann, Ulrich and Zeiske, Stefan and Park, Soohyung and Schultz, Thorsten and Kickhoefel, Sebastian and Scherf, Ullrich and Blumstengel, Sylke and Koch, Norbert and Neher, Dieter}, title = {Direct observation of state-filling at hybrid tin oxide/organic interfaces}, series = {Applied physics letters}, volume = {114}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5082704}, pages = {5}, year = {2019}, abstract = {Electroluminescence (EL) spectra of hybrid charge transfer states at metal oxide/organic type-II heterojunctions exhibit bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for either electric field-induced effects or the filling of trap states at the oxide surface have been put forward. Here, we combine the results of EL and photovoltaic measurements to eliminate the unavoidable effect of the series resistance of inorganic and organic components on the total voltage drop across the hybrid device. For SnOx combined with the conjugated polymer [ladder type poly-(para-phenylene)], we find a one-to-one correspondence between the blue-shift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data are resembled best by a model considering the combination of an exponential density of states with a doped semiconductor. Published under license by AIP Publishing.}, language = {en} } @article{PingelZenNeheretal.2009, author = {Pingel, Patrick and Zen, Achmad and Neher, Dieter and Lieberwirth, Ingo and Wegner, Gerhard and Allard, Sybille and Scherf, Ullrich}, title = {Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity}, issn = {0947-8396}, doi = {10.1007/s00339-008-4994-0}, year = {2009}, abstract = {Layers made from soluble low molecular weight polythiophene PQT-12 with low polydispersity exhibit a highly ordered structure and charge-carrier mobilities of the order of 10(-3) cm(2)/(V s), which we attribute to its proximity to monodispersity. We propose that polydispersity is a decisive factor with regard to structure formation and transport properties of soluble low molecular weight polythiophenes.}, language = {en} } @article{SainovaFujikawaScherfetal.1999, author = {Sainova, Dessislava and Fujikawa, H. and Scherf, Ullrich and Neher, Dieter}, title = {The effect of hole traps on the performance of single layer polymer light emitting diodes}, year = {1999}, language = {en} } @article{FieselNeherScherf1999, author = {Fiesel, R. and Neher, Dieter and Scherf, Ullrich}, title = {On the solid state aggregation of chiral substituted poly(para-phenylene)s (PPPs)}, year = {1999}, language = {en} } @article{InalChiappisiKoelschetal.2013, author = {Inal, Sahika and Chiappisi, Leonardo and K{\"o}lsch, Jonas D. and Kraft, Mario and Appavou, Marie-Sousai and Scherf, Ullrich and Wagner, Manfred and Hansen, Michael Ryan and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp408864s}, pages = {14576 -- 14587}, year = {2013}, abstract = {Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements.}, language = {en} } @article{LangeKniepertPingeletal.2013, author = {Lange, Ilja and Kniepert, Juliane and Pingel, Patrick and Dumsch, Ines and Allard, Sybille and Janietz, Silvia and Scherf, Ullrich and Neher, Dieter}, title = {Correlation between the open circuit voltage and the energetics of organic bulk heterojunction solar cells}, series = {The journal of physical chemistry letters}, volume = {4}, journal = {The journal of physical chemistry letters}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz401971e}, pages = {3865 -- 3871}, year = {2013}, abstract = {A detailed investigation of the open circuit voltage (V-OC) of organic bulk heterojunction solar cells comprising three different donor polymers and two different fullerene-based acceptors is presented. Bias amplified charge extraction (BACE) is combined with Kelvin Probe measurements to derive information on the relevant energetics in the blend. On the example of P3HT:PC70BM the influence of composition and preparation conditions on the relevant transport levels will be shown. Moderate upward shifts of the P3HT HOMO depending on crystallinity are observed, but contrarily to common believe, the dependence of V-OC on blend composition and thermal history is found to be largely determined by the change in the PCBM LUMO energy. Following this approach, we quantified the energetic contribution to the V-OC in blends with fluorinated polymers or higher adduct fullerenes.}, language = {en} } @article{GrossMuellerNothoferetal.2000, author = {Gross, M. and M{\"u}ller, David C. and Nothofer, Heinz-Georg and Scherf, Ullrich and Neher, Dieter and Br{\"a}uchler, C. and Meerholz, Klaus}, title = {Improving the performance of doped p-conjugated polymers for use in organic light-emitting diodes}, year = {2000}, language = {en} } @article{JoshiPingelGrigorianetal.2009, author = {Joshi, Siddharth and Pingel, Patrick and Grigorian, Souren and Panzner, Tobias and Pietsch, Ullrich and Neher, Dieter and Forster, Michael and Scherf, Ullrich}, title = {Bimodal temperature behavior of structure and mobility in high molecular weight p3ht thin films}, issn = {0024-9297}, doi = {10.1021/Ma900021w}, year = {2009}, abstract = {We report a temperature dependent crystalline structure of spin-coated thin films of high molecular weight regioregular poly(3-hexylthiophene) (P3HT) (M-n similar to 30000 g/mol) and its correlation with charge carrier mobility. These investigations show a reversible change of the crystalline structure, where the interlayer lattice spacing (100)along the alkyl side chains continuously increases up to a temperature of about 220 degrees C; in contrast, the in-plane pi-pi distance reduces with increasing temperature. These changes in structure are reversible and can be repeated several times. The temperature-induced structural properties differ for thick and thin films, pointing to a surface/interface role in stabilization of the layer morphology. In contrast to the structural changes, the carrier mobility is rather constant in the temperature range from room temperature up to 100-120 degrees C, followed by a continuous decrease. For thick layers this drop is significant and the transistor performance almost vanishes at high temperature, however, it completely recovers upon cooling back to roorn temperature. The drop of the charge carrier mobility at higher temperatures is in contrast with expectations front the structural studies, considering the increase of crystalline fraction of the polycrystalline layer. our electrical measurements Underscore that the reduction of the macroscopic mobility is mostly caused by it pronounced decrease of the intergrain transport. The thermally induced crystallization along(100) direction and the creation of numerous small crystallites at the film-substrate interface reduce the number of long polymer chain, bridging crystalline domains, which ultimately limits the macroscopic charge transport.}, language = {en} } @article{MitevaMeiselNothoferetal.2000, author = {Miteva, T. and Meisel, A. and Nothofer, Heinz-Georg and Scherf, Ullrich and Knoll, W. and Neher, Dieter and Grell, M. and Lupo, D. and Yasuda, A.}, title = {Polarized electroluminescence from highly aligned liquid-crystalline polymers}, year = {2000}, language = {en} } @article{BauerUmbaschGiessenetal.2000, author = {Bauer, C. and Umbasch, G. and Giessen, H. and Meisel, A. and Nothofer, Heinz-Georg and Neher, Dieter and Scherf, Ullrich and Marth, R.}, title = {Polarized Photoluminescence and Spectral Narrowing in an oriented Polyfluorene Thin Film}, year = {2000}, language = {en} } @article{GrellKnollLupoetal.1999, author = {Grell, M. and Knoll, W. and Lupo, D. and Meisel, A. and Miteva, T. and Neher, Dieter and Nothofer, Heinz-Georg and Scherf, Ullrich and Yasuda, H.}, title = {Blue polarized electroluminescence from a liquid crystalline polyfluorene}, year = {1999}, language = {en} } @article{SchubertDolfenFrischetal.2012, author = {Schubert, Marcel and Dolfen, Daniel and Frisch, Johannes and Roland, Steffen and Steyrleuthner, Robert and Stiller, Burkhard and Chen, Zhihua and Scherf, Ullrich and Koch, Norbert and Facchetti, Antonio and Neher, Dieter}, title = {Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers}, series = {dvanced energy materials}, volume = {2}, journal = {dvanced energy materials}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201100601}, pages = {369 -- 380}, year = {2012}, abstract = {The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4\%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70\%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction.}, language = {en} }