@article{WaltherGuanterHeimetal.2018, author = {Walther, Sophia and Guanter, Luis and Heim, Birgit and Jung, Martin and Duveiller, Gregory and Wolanin, Aleksandra and Sachs, Torsten}, title = {Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {20}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-6221-2018}, pages = {6221 -- 6256}, year = {2018}, abstract = {High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR <= GPP < SIF < VIs/VOD. SIF as an indicator of photosynthesis is maximised around the time of highest annual temperatures. The modelled GPP peaks at a similar time to APAR. The time lag of the annual peak between APAR and instantaneous SIF fluxes indicates that the SIF data do contain information on light-use efficiency of tundra vegetation, but further detailed studies are necessary to verify this. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. A particularly late peak of the normalised difference vegetation index (NDVI) in regions with very small seasonality in greenness and a high amount of lakes probably originates from artefacts. Given the very short growing season in circumpolar areas, the average time difference in maximum annual photosynthetic activity and greenness or growth of 3 to 25 days (depending on the data sets chosen) is important and needs to be considered when using satellite observations as drivers in vegetation models.}, language = {en} } @article{ObuLantuitFritzetal.2016, author = {Obu, Jaroslav and Lantuit, Hugues and Fritz, Michael and Pollard, Wayne H. and Sachs, Torsten and Guenther, Frank}, title = {Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Co-Action Publ.}, address = {Jarfalla}, issn = {0800-0395}, doi = {10.3402/polar.v35.30313}, pages = {57 -- 99}, year = {2016}, abstract = {Ice-rich permafrost coasts often undergo rapid erosion, which results in land loss and release of considerable amounts of sediment, organic carbon and nutrients, impacting the near-shore ecosystems. Because of the lack of volumetric erosion data, Arctic coastal erosion studies typically report on planimetric erosion. Our aim is to explore the relationship between planimetric and volumetric coastal erosion measurements and to update the coastal erosion rates on Herschel Island in the Canadian Arctic. We used high-resolution digital elevation models to compute sediment release and compare volumetric data to planimetric estimations of coastline movements digitized from satellite imagery. Our results show that volumetric erosion is locally less variable and likely corresponds better with environmental forcing than planimetric erosion. Average sediment release volumes are in the same range as sediment release volumes calculated from coastline movements combined with cliff height. However, the differences between these estimates are significant for small coastal sections. We attribute the differences between planimetric and volumetric coastal erosion measurements to mass wasting, which is abundant along the coasts of Herschel Island. The average recorded coastline retreat on Herschel Island was 0.68m a(-1) for the period 2000-2011. Erosion rates increased by more than 50\% in comparison with the period 1970-2000, which is in accordance with a recently observed increase along the Alaskan Beaufort Sea. The estimated annual sediment release was 28.2 m(3) m(-1) with resulting fluxes of 590 kg C m(-1) and 104 kg N m(-1).}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and flooding-threats to coastal Infrastructure in the Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {996}, issn = {1866-8372}, doi = {10.25932/publishup-43227}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432279}, pages = {18}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 m·a⁻¹ (mean -0.6 m·a⁻¹). Mean coastal retreat decreased from -0.6 m·a⁻¹ to -0.5 m·a⁻¹, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a⁻¹ in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding - Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada (vol 39, pg 900, 2016)}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-016-0115-z}, pages = {1294 -- 1295}, year = {2016}, language = {en} } @article{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding-Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-015-0046-0}, pages = {900 -- 915}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 mI double dagger a(-1) (mean -0.6 mI double dagger a(-1)). Mean coastal retreat decreased from -0.6 mI double dagger a(-1) to -0.5 mI double dagger a(-1), for 1952-1970 and 1970-2000, respectively, and increased to -1.3 mI double dagger a(-1) in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} } @phdthesis{Sachs2009, author = {Sachs, Torsten}, title = {Land-atmosphere interactions on different scales}, address = {Potsdam}, pages = {XII, 180 S. : Ill., graph. Darst., Kt.}, year = {2009}, language = {en} } @article{KoebschWinkelLiebneretal.2019, author = {Koebsch, Franziska and Winkel, Matthias and Liebner, Susanne and Liu, Bo and Westphal, Julia and Schmiedinger, Iris and Spitzy, Alejandro and Gehre, Matthias and Jurasinski, Gerald and K{\"o}hler, Stefan and Unger, Viktoria and Koch, Marian and Sachs, Torsten and B{\"o}ttcher, Michael E.}, title = {Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland}, series = {Biogeosciences}, volume = {16}, journal = {Biogeosciences}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-16-1937-2019}, pages = {1937 -- 1953}, year = {2019}, abstract = {In natural coastal wetlands, high supplies of marine sulfate suppress methanogenesis. Coastal wetlands are, however, often subject to disturbance by diking and drainage for agricultural use and can turn to potent methane sources when rewetted for remediation. This suggests that preceding land use measures can suspend the sulfate-related methane suppressing mechanisms. Here, we unravel the hydrological relocation and biogeochemical S and C transformation processes that induced high methane emissions in a disturbed and rewetted peatland despite former brackish impact. The underlying processes were investigated along a transect of increasing distance to the coastline using a combination of concentration patterns, stable isotope partitioning, and analysis of the microbial community structure. We found that diking and freshwater rewetting caused a distinct freshening and an efficient depletion of the brackish sulfate reservoir by dissimilatory sulfate reduction (DSR). Despite some legacy effects of brackish impact expressed as high amounts of sedimentary S and elevated electrical conductivities, contemporary metabolic processes operated mainly under sulfate-limited conditions. This opened up favorable conditions for the establishment of a prospering methanogenic community in the top 30-40 cm of peat, the structure and physiology of which resemble those of terrestrial organic-rich environments. Locally, high amounts of sulfate persisted in deeper peat layers through the inhibition of DSR, probably by competitive electron acceptors of terrestrial origin, for example Fe(III). However, as sulfate occurred only in peat layers below 30-40 cm, it did not interfere with high methane emissions on an ecosystem scale. Our results indicate that the climate effect of disturbed and remediated coastal wetlands cannot simply be derived by analogy with their natural counterparts. From a greenhouse gas perspective, the re-exposure of diked wetlands to natural coastal dynamics would literally open up the floodgates for a replenishment of the marine sulfate pool and therefore constitute an efficient measure to reduce methane emissions.}, language = {en} } @article{WenUngerJurasinskietal.2018, author = {Wen, Xi and Unger, Viktoria and Jurasinski, Gerald and Koebsch, Franziska and Horn, Fabian and Rehder, Gregor and Sachs, Torsten and Zak, Dominik and Lischeid, Gunnar and Knorr, Klaus-Holger and Boettcher, Michael E. and Winkel, Matthias and Bodelier, Paul L. E. and Liebner, Susanne}, title = {Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {21}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-6519-2018}, pages = {6519 -- 6536}, year = {2018}, abstract = {The rewetting of drained peatlands alters peat geochemistry and often leads to sustained elevated methane emission. Although this methane is produced entirely by microbial activity, the distribution and abundance of methane-cycling microbes in rewetted peatlands, especially in fens, is rarely described. In this study, we compare the community composition and abundance of methane-cycling microbes in relation to peat porewater geochemistry in two rewetted fens in northeastern Germany, a coastal brackish fen and a freshwater riparian fen, with known high methane fluxes. We utilized 16S rRNA high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on 16S rRNA, mcrA, and pmoA genes to determine microbial community composition and the abundance of total bacteria, methanogens, and methanotrophs. Electrical conductivity (EC) was more than 3 times higher in the coastal fen than in the riparian fen, averaging 5.3 and 1.5 mS cm(-1), respectively. Porewater concentrations of terminal electron acceptors (TEAs) varied within and among the fens. This was also reflected in similarly high intra- and inter-site variations of microbial community composition. Despite these differences in environmental conditions and electron acceptor availability, we found a low abundance of methanotrophs and a high abundance of methanogens, represented in particular by Methanosaetaceae, in both fens. This suggests that rapid (re) establishment of methanogens and slow (re) establishment of methanotrophs contributes to prolonged increased methane emissions following rewetting.}, language = {en} } @article{TanskiWagnerKnoblauchetal.2019, author = {Tanski, Georg and Wagner, Dirk and Knoblauch, Christian and Fritz, Michael and Sachs, Torsten and Lantuit, Hugues}, title = {Rapid CO2 Release From Eroding Permafrost in Seawater}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {20}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL084303}, pages = {11244 -- 11252}, year = {2019}, language = {en} } @misc{WaltherGuanterHeimetal.2018, author = {Walther, Sophia and Guanter, Luis and Heim, Birgit and Jung, Martin and Duveiller, Gregory and Wolanin, Aleksandra and Sachs, Torsten}, title = {Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1025}, issn = {1866-8372}, doi = {10.25932/publishup-44620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446205}, pages = {6221 -- 6256}, year = {2018}, abstract = {High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR ≦ GPP