@article{TetenoireEhlertJuaristietal.2022, author = {Tetenoire, Auguste and Ehlert, Christopher and Juaristi, Joseba I{\~n}aki and Saalfrank, Peter and Alducin, Maite}, title = {Why ultrafast photoinduced CO desorption dominates over oxidation on Ru(0001)}, series = {The journal of physical chemistry letters}, volume = {13}, journal = {The journal of physical chemistry letters}, number = {36}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c02327}, pages = {8516 -- 8521}, year = {2022}, abstract = {CO oxidation on Ru(0001) is a long-standing example of a reaction that, being thermally forbidden in ultrahigh vacuum, can be activated by femtosecond laser pulses. In spite of its relevance, the precise dynamics of the photoinduced oxidation process as well as the reasons behind the dominant role of the competing CO photodesorption remain unclear. Here we use ab initio molecular dynamics with electronic friction that account for the highly excited and nonequilibrated system created by the laser to investigate both reactions. Our simulations successfully reproduce the main experimental findings: the existence of photoinduced oxidation and desorption, the large desorption to oxidation branching ratio, and the changes in the O K-edge X-ray absorption spectra attributed to the initial stage of the oxidation process. Now, we are able to monitor in detail the ultrafast CO desorption and CO oxidation occurring in the highly excited system and to disentangle what causes the unexpected inertness to the otherwise energetically favored oxidation.}, language = {en} } @article{PenschkeEdlervonZanderBeqirajetal.2022, author = {Penschke, Christopher and Edler von Zander, Robert and Beqiraj, Alkit and Zehle, Anna and Jahn, Nicolas and Neumann, Rainer and Saalfrank, Peter}, title = {Water on porous, nitrogen-containing layered carbon materials}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00657j}, pages = {14709 -- 14726}, year = {2022}, abstract = {Porous, layered materials containing sp(2)-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these quasi two-dimensional materials (2DM) is water, and a photo(electro)chemical key reaction catalyzed by them, is water splitting into H-2 and O-2, with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) as half reactions. The complexity of some C/N-based 2DM in contact with water raises special needs for their theoretical modelling, which in turn is needed for rational design of C/N-based catalysts. In this work, three classes of C/N-containing porous 2DM with varying pore sizes and C/N ratios, namely graphitic carbon nitride (g-C3N4), C2N, and poly(heptazine imides) (PHI), are studied with various computational methods. We elucidate the performance of different models and model chemistries (the combination of electronic structure method and basis set) for water and water fragment adsorption in the low-coverage regime. Further, properties related to the photo(electro)chemical activity like electrochemical overpotentials, band gaps, and optical excitation energies are in our focus. Specifically, periodic models will be tested vs. cluster models, and density functional theory (DFT) vs. wavefunction theory (WFT). This work serves as a basis for a systematic study of trends for the photo(electro)chemical activity of C/N-containing layered materials as a function of water content, pore size and density.}, language = {en} } @article{HeidenWirthCampenetal.2018, author = {Heiden, Sophia and Wirth, Jonas and Campen, Richard Kramer and Saalfrank, Peter}, title = {Water molecular beam scattering at alpha-Al2O3(0001)}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b04179}, pages = {15494 -- 15504}, year = {2018}, abstract = {Recent molecular beam experiments have shown that water may adsorb molecularly or dissociatively on an α-Al2O3(0001) surface, with enhanced dissociation probability compared to "pinhole dosing", i.e., adsorption under thermal equilibrium conditions. However, precise information on the ongoing reactions and their relative probabilities is missing. In order to shed light on molecular beam scattering for this system, we perform ab initio molecular dynamics calculations to simulate water colliding with α-Al2O3(0001). We find that single water molecules hitting a cold, clean surface from the gas phase are either reflected, molecularly adsorbed, or dissociated (so-called 1-2 dissociation only). A certain minimum translational energy (above 0.1 eV) seems to be required to enforce dissociation, which may explain the higher dissociation probability in molecular beam experiments. When the surface is heated and/or when refined surface and beam models are applied (preadsorption with water or water fragments, clustering and internal preexcitation in the beam), additional channels open, among them physisorption, water clustering on the surface, and so-called 1-4 and 1-4′ dissociation.}, language = {en} } @article{HeidenYueKirschetal.2018, author = {Heiden, Sophia and Yue, Yanhua and Kirsch, Harald and Wirth, Jonas A. and Saalfrank, Peter and Campen, Richard Kramer}, title = {Water dissociative adsorption on α-Al2O3(112̅0) is controlled by surface site undercoordination, density, and topology}, series = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b10410}, pages = {6573 -- 6584}, year = {2018}, abstract = {α-Al2O3 surfaces are common in a wide variety of applications and useful models of more complicated, environmentally abundant, alumino-silicate surfaces. While decades of work have clarified that all properties of these surfaces depend sensitively on the crystal face and the presence of even small amounts of water, quantitative insight into this dependence has proven challenging. Overcoming this challenge requires systematic study of the mechanism by which water interacts with various α-Al2O3 surfaces. Such insight is most easily gained for the interaction of small amounts of water with surfaces in ultra high vacuum. In this study, we continue our combined theoretical and experimental approach to this problem, previously applied to water interaction with the α-Al2O3 (0001) and (11̅02) surfaces, now to water interaction with the third most stable surface, that is, the (112̅0). Because we characterize all three surfaces using similar tools, it is straightforward to conclude that the (112̅0) is most reactive with water. The most important factor explaining its increased reactivity is that the high density of undercoordinated surface Al atoms on the (112̅0) surface allows the bidentate adsorption of OH fragments originating from dissociatively adsorbed water, while only monodentate adsorption is possible on the (0001) and (11̅02) surfaces: the reactivity of α-Al2O3 surfaces with water depends strongly, and nonlinearly, on the density of undercoordinated surface Al atoms.}, language = {en} } @article{MaterzaniniTantardiniLindanetal.2005, author = {Materzanini, G. and Tantardini, G. F. and Lindan, P. J. D. and Saalfrank, Peter}, title = {Water adsorption at metal surfaces : a first-principles study of the p(root 3x root 3)R30 degrees H2O bilayer on Ru(0001)}, issn = {1098-0121}, year = {2005}, abstract = {In the light of recent intensity-voltage low energy electron diffraction (LEED-IV) experiments [Surf. Sci. 316, 92 (1994); Surf. Rev. Lett. 10, 487 (2003)], the electronic and geometric structure of a water bilayer adsorbed at the Ru(0001) surface are investigated through first-principles total energy calculations, using periodic slab geometries and gradient-corrected density functional theory (DFT). We consider five possible bilayer structures, all roughly consistent with the LEED-IV analysis (three intact structures and two half-dissociated), and a water single layer at Ru(0001). Adsorption energies and substrate-adsorbate geometry parameters are given and discussed in the light of the experiments. We also give a comparative analysis of the electron density redistribution (Delta rho) and of the dipole moment change (Delta mu) induced by water adsorption on the Ru(0001) surface. In agreement with Feibelman [Science 295, 99 (2002)], the half-dissociated structures are found to be more stable than the intact ones, and their adsorption geometries in better agreement with the LEED-IV data. However, the Delta rho analysis shows that a half-dissociated structure induces a Delta mu>0, which would be incompatible with the experimentally measured decrease of the work function following bilayer adsorption; the latter would be consistent, instead, with the Delta mu < 0 induced by the intact structures. It is the aim of this paper to compare various possible adsorption structures, most of them already considered previously, with one and the same method. For this purpose, thick slabs and restrictive computational parameters are chosen to generally address the accuracy and the limits of DFT in reproducing adsorption energies and bond lengths of water-metal interacting systems}, language = {en} } @article{XiongWłodarczykGallandietal.2018, author = {Xiong, Tao and Włodarczyk, Radosław Stanisław and Gallandi, Lukas and K{\"o}rzd{\"o}rfer, Thomas and Saalfrank, Peter}, title = {Vibrationally resolved photoelectron spectra of lower diamondoids}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, volume = {148}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5012131}, pages = {9}, year = {2018}, abstract = {Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ∼0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and Stueker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02615f}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @misc{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86826}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {17}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C5CP02615F}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{BanerjeeSaalfrank2014, author = {Banerjee, Shiladitya and Saalfrank, Peter}, title = {Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids: a study based on time-dependent correlation functions}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53535e}, pages = {144 -- 158}, year = {2014}, language = {en} }