@article{RoschkeChengMeinel2013, author = {Roschke, Sebastian and Cheng, Feng and Meinel, Christoph}, title = {High-quality attack graph-based IDS correlation}, series = {Logic journal of the IGPL}, volume = {21}, journal = {Logic journal of the IGPL}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-0751}, doi = {10.1093/jigpal/jzs034}, pages = {571 -- 591}, year = {2013}, abstract = {Intrusion Detection Systems are widely deployed in computer networks. As modern attacks are getting more sophisticated and the number of sensors and network nodes grow, the problem of false positives and alert analysis becomes more difficult to solve. Alert correlation was proposed to analyse alerts and to decrease false positives. Knowledge about the target system or environment is usually necessary for efficient alert correlation. For representing the environment information as well as potential exploits, the existing vulnerabilities and their Attack Graph (AG) is used. It is useful for networks to generate an AG and to organize certain vulnerabilities in a reasonable way. In this article, a correlation algorithm based on AGs is designed that is capable of detecting multiple attack scenarios for forensic analysis. It can be parameterized to adjust the robustness and accuracy. A formal model of the algorithm is presented and an implementation is tested to analyse the different parameters on a real set of alerts from a local network. To improve the speed of the algorithm, a multi-core version is proposed and a HMM-supported version can be used to further improve the quality. The parallel implementation is tested on a multi-core correlation platform, using CPUs and GPUs.}, language = {en} }