@misc{Reich1990, author = {Reich, Sebastian}, title = {On a geometrical interpretation of differential-algebraic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46683}, year = {1990}, abstract = {The subject of this paper is the relation of differential-algebraic equations (DAEs) to vector fields on manifolds. For that reason, we introduce the notion of a regular DAE as a DAE to which a vector field uniquely corresponds. Furthermore, a technique is described which yields a family of manifolds for a given DAE. This socalled family of constraint manifolds allows in turn the formulation of sufficient conditions for the regularity of a DAE. and the definition of the index of a regular DAE. We also state a method for the reduction of higher-index DAEs to lowsr-index ones that can be solved without introducing additional constants of integration. Finally, the notion of realizability of a given vector field by a regular DAE is introduced, and it is shown that any vector field can be realized by a regular DAE. Throughout this paper the problem of path-tracing is discussed as an illustration of the mathematical phenomena.}, language = {en} } @misc{Reich1991, author = {Reich, Sebastian}, title = {On an existence and uniqueness theory for nonlinear differential-algebraic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46706}, year = {1991}, abstract = {An existence and uniqueness theory is developed for general nonlinear and nonautonomous differential-algebraic equations (DAEs) by exploiting their underlying differential-geometric structure. A DAE is called regular if there is a unique nonautonomous vector field such that the solutions of the DAE and the solutions of the vector field are in one-to-one correspondence. Sufficient conditions for regularity of a DAE are derived in terms of constrained manifolds. Based on this differential-geometric characterization, existence and uniqueness results are stated for regular DAEs. Furthermore, our not ons are compared with techniques frequently used in the literature such as index and solvability. The results are illustrated in detail by means of a simple circuit example.}, language = {en} } @misc{Reich1992, author = {Reich, Sebastian}, title = {Differential-algebraic equations and applications in circuit theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46646}, year = {1992}, abstract = {Technical and physical systems, especially electronic circuits, are frequently modeled as a system of differential and nonlinear implicit equations. In the literature such systems of equations are called differentialalgebraic equations (DAEs). It turns out that the numerical and analytical properties of a DAE depend on an integer called the index of the problem. For example, the well-known BDF method of Gear can be applied, in general, to a DAE only if the index does not exceed one. In this paper we give a geometric interpretation of higherindex DAEs and indicate problems arising in connection with such DAEs by means of several examples.}, language = {en} } @misc{AscherChinReich1994, author = {Ascher, Uri M. and Chin, Hongsheng and Reich, Sebastian}, title = {Stabilization of DAEs and invariant manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15625}, year = {1994}, abstract = {Many methods have been proposed for the stabilization of higher index differential-algebraic equations (DAEs). Such methods often involve constraint differentiation and problem stabilization, thus obtaining a stabilized index reduction. A popular method is Baumgarte stabilization, but the choice of parameters to make it robust is unclear in practice. Here we explain why the Baumgarte method may run into trouble. We then show how to improve it. We further develop a unifying theory for stabilization methods which includes many of the various techniques proposed in the literature. Our approach is to (i) consider stabilization of ODEs with invariants, (ii) discretize the stabilizing term in a simple way, generally different from the ODE discretization, and (iii) use orthogonal projections whenever possible. The best methods thus obtained are related to methods of coordinate projection. We discuss them and make concrete algorithmic suggestions.}, language = {en} } @misc{LeimkuhlerReich1994, author = {Leimkuhler, Benedict and Reich, Sebastian}, title = {Symplectic integration of constrained Hamiltonian systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15653}, year = {1994}, abstract = {A Hamiltonian system in potential form (formula in the original abstract) subject to smooth constraints on q can be viewed as a Hamiltonian system on a manifold, but numerical computations must be performed in Rn. In this paper methods which reduce "Hamiltonian differential algebraic equations" to ODEs in Euclidean space are examined. The authors study the construction of canonical parameterizations or local charts as well as methods based on the construction of ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an invariant manifold. In each case, a Hamiltonian system of ordinary differential equations is produced. The stability of the constraint invariants and the behavior of the original Hamiltonian along solutions are investigated both numerically and analytically.}, language = {en} } @misc{AscherChinPetzoldetal.1994, author = {Ascher, Uri M. and Chin, Hongsheng and Petzold, Linda R. and Reich, Sebastian}, title = {Stabilization of constrained mechanical systems with DAEs and invariant manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15698}, year = {1994}, abstract = {Many methods have been proposed for the simulation of constrained mechanical systems. The most obvious of these have mild instabilities and drift problems. Consequently, stabilization techniques have been proposed A popular stabilization method is Baumgarte's technique, but the choice of parameters to make it robust has been unclear in practice. Some of the simulation methods that have been proposed and used in computations are reviewed here, from a stability point of view. This involves concepts of differential-algebraic equation (DAE) and ordinary differential equation (ODE) invariants. An explanation of the difficulties that may be encountered using Baumgarte's method is given, and a discussion of why a further quest for better parameter values for this method will always remain frustrating is presented. It is then shown how Baumgarte's method can be improved. An efficient stabilization technique is proposed, which may employ explicit ODE solvers in case of nonstiff or highly oscillatory problems and which relates to coordinate projection methods. Examples of a two-link planar robotic arm and a squeezing mechanism illustrate the effectiveness of this new stabilization method.}, language = {en} } @misc{Reich1994, author = {Reich, Sebastian}, title = {Momentum conserving symplectic integrators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16824}, year = {1994}, abstract = {In this paper, we show that symplectic partitioned Runge-Kutta methods conserve momentum maps corresponding to linear symmetry groups acting on the phase space of Hamiltonian differential equations by extended point transformation. We also generalize this result to constrained systems and show how this conservation property relates to the symplectic integration of Lie-Poisson systems on certain submanifolds of the general matrix group GL(n).}, language = {en} } @misc{Reich1995, author = {Reich, Sebastian}, title = {Smoothed dynamics of highly oscillatory Hamiltonian systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15639}, year = {1995}, abstract = {We consider the numerical treatment of Hamiltonian systems that contain a potential which grows large when the system deviates from the equilibrium value of the potential. Such systems arise, e.g., in molecular dynamics simulations and the spatial discretization of Hamiltonian partial differential equations. Since the presence of highly oscillatory terms in the solutions forces any explicit integrator to use very small step size, the numerical integration of such systems provides a challenging task. It has been suggested before to replace the strong potential by a holonomic constraint that forces the solutions to stay at the equilibrium value of the potential. This approach has, e.g., been successfully applied to the bond stretching in molecular dynamics simulations. In other cases, such as the bond-angle bending, this methods fails due to the introduced rigidity. Here we give a careful analysis of the analytical problem by means of a smoothing operator. This will lead us to the notion of the smoothed dynamics of a highly oscillatory Hamiltonian system. Based on our analysis, we suggest a new constrained formulation that maintains the flexibility of the system while at the same time suppressing the high-frequency components in the solutions and thus allowing for larger time steps. The new constrained formulation is Hamiltonian and can be discretized by the well-known SHAKE method.}, language = {en} } @misc{Reich1995, author = {Reich, Sebastian}, title = {On the local qualitative behavior of differential-algebraic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46739}, year = {1995}, abstract = {A theoretical famework for the investigation of the qualitative behavior of differential-algebraic equations (DAEs) near an equilibrium point is established. The key notion of our approach is the notion of regularity. A DAE is called regular locally around an equilibrium point if there is a unique vector field such that the solutions of the DAE and the vector field are in one-to-one correspondence in a neighborhood of this equili Drium point. Sufficient conditions for the regularity of an equilibrium point are stated. This in turn allows us to translate several local results, as formulated for vector fields, to DAEs that are regular locally around a g: ven equilibrium point (e.g. Local Stable and Unstable Manifold Theorem, Hopf theorem). It is important that ihese theorems are stated in terms of the given problem and not in terms of the corresponding vector field.}, language = {en} } @article{StaniforthWoodReich2006, author = {Staniforth, Andrew and Wood, Nigel and Reich, Sebastian}, title = {A time-staggered semi-Lagrangian discretization of the rotating shallow-water equations}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {132}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {621C}, publisher = {Wiley}, address = {Weinheim}, issn = {0035-9009}, doi = {10.1256/qj.06.30}, pages = {3107 -- 3116}, year = {2006}, abstract = {A time-staggered semi-Lagrangian discretization of the rotating shallow-water equations is proposed and analysed. Application of regularization to the geopotential field used in the momentum equations leads to an unconditionally stable scheme. The analysis, together with a fully nonlinear example application, suggests that this approach is a promising, efficient, and accurate alternative to traditional schemes.}, language = {en} } @article{Reich2006, author = {Reich, Sebastian}, title = {Linearly implicit time stepping methods for numerical weather prediction}, series = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, volume = {46}, journal = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, publisher = {Springer}, address = {Dordrecht}, issn = {0006-3835}, doi = {10.1007/s10543-006-0065-0}, pages = {607 -- 616}, year = {2006}, abstract = {The efficient time integration of the dynamic core equations for numerical weather prediction (NWP) remains a key challenge. One of the most popular methods is currently provided by implementations of the semi-implicit semi-Lagrangian (SISL) method, originally proposed by Robert (J. Meteorol. Soc. Jpn., 1982). Practical implementations of the SISL method are, however, not without certain shortcomings with regard to accuracy, conservation properties and stability. Based on recent work by Gottwald, Frank and Reich (LNCSE, Springer, 2002), Frank, Reich, Staniforth, White and Wood (Atm. Sci. Lett., 2005) and Wood, Staniforth and Reich (Atm. Sci. Lett., 2006) we propose an alternative semi-Lagrangian implementation based on a set of regularized equations and the popular Stormer-Verlet time stepping method in the context of the shallow-water equations (SWEs). Ultimately, the goal is to develop practical implementations for the 3D Euler equations that overcome some or all shortcomings of current SISL implementations.}, language = {en} } @article{FrankMooreReich2006, author = {Frank, Jason and Moore, Brian E. and Reich, Sebastian}, title = {Linear PDEs and numerical methods that preserve a multisymplectic conservation law}, issn = {1064-8275}, doi = {10.1137/050628271}, year = {2006}, abstract = {Multisymplectic methods have recently been proposed as a generalization of symplectic ODE methods to the case of Hamiltonian PDEs. Their excellent long time behavior for a variety of Hamiltonian wave equations has been demonstrated in a number of numerical studies. A theoretical investigation and justification of multisymplectic methods is still largely missing. In this paper, we study linear multisymplectic PDEs and their discretization by means of numerical dispersion relations. It is found that multisymplectic methods in the sense of Bridges and Reich [Phys. Lett. A, 284 ( 2001), pp. 184-193] and Reich [J. Comput. Phys., 157 (2000), pp. 473-499], such as Gauss-Legendre Runge-Kutta methods, possess a number of desirable properties such as nonexistence of spurious roots and conservation of the sign of the group velocity. A certain CFL-type restriction on Delta t/Delta x might be required for methods higher than second order in time. It is also demonstrated by means of the explicit midpoint method that multistep methods may exhibit spurious roots in the numerical dispersion relation for any value of Delta t/Delta x despite being multisymplectic in the sense of discrete variational mechanics [J. E. Marsden, G. P. Patrick, and S. Shkoller, Commun. Math. Phys., 199 (1999), pp. 351-395]}, language = {en} } @article{BridgesReich2006, author = {Bridges, Thomas J. and Reich, Sebastian}, title = {Numerical methods for Hamiltonian PDEs}, issn = {0305-4470}, doi = {10.1088/0305-4470/39/19/S02}, year = {2006}, abstract = {The paper provides an introduction and survey of conservative discretization methods for Hamiltonian partial differential equations. The emphasis is on variational, symplectic and multi-symplectic methods. The derivation of methods as well as some of their fundamental geometric properties are discussed. Basic principles are illustrated by means of examples from wave and fluid dynamics}, language = {en} } @article{AkhmatskayaBouRabeeReich2009, author = {Akhmatskaya, Elena and Bou-Rabee, Nawaf and Reich, Sebastian}, title = {A comparison of generalized hybrid Monte Carlo methods with and without momentum flip}, issn = {0021-9991}, doi = {10.1016/j.jcp.2008.12.014}, year = {2009}, abstract = {The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC.}, language = {en} } @article{AkhmatskayaBouRabeeReich2009, author = {Akhmatskaya, Elena and Bou-Rabee, Nawaf and Reich, Sebastian}, title = {Erratum to "A comparison of generalized hybrid Monte Carlo methods with and without momentum flip" [J. Comput. Phys. 228 (2009), S. 2256 - 2265]}, issn = {0021-9991}, doi = {10.1016/j.jcp.2009.06.039}, year = {2009}, abstract = {The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC.}, language = {en} } @article{LeimkuhlerReich2009, author = {Leimkuhler, Benedict and Reich, Sebastian}, title = {A metropolis adjusted Nos{\´e}-Hoover thermostat}, issn = {0764-583X}, doi = {10.1051/M2an/2009023}, year = {2009}, abstract = {We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nose-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.}, language = {en} } @article{BergemannGottwaldReich2009, author = {Bergemann, Kay and Gottwald, Georg and Reich, Sebastian}, title = {Ensemble propagation and continuous matrix factorization algorithms}, issn = {0035-9009}, doi = {10.1002/qj.457}, year = {2009}, abstract = {We consider the problem of propagating an ensemble of solutions and its characterization in terms of its mean and covariance matrix. We propose differential equations that lead to a continuous matrix factorization of the ensemble into a generalized singular value decomposition (SVD). The continuous factorization is applied to ensemble propagation under periodic rescaling (ensemble breeding) and under periodic Kalman analysis steps (ensemble Kalman filter). We also use the continuous matrix factorization to perform a re-orthogonalization of the ensemble after each time-step and apply the resulting modified ensemble propagation algorithm to the ensemble Kalman filter. Results from the Lorenz-96 model indicate that the re-orthogonalization of the ensembles leads to improved filter performance.}, language = {en} } @article{CotterHamPainetal.2009, author = {Cotter, Colin J. and Ham, David A. and Pain, Christopher C. and Reich, Sebastian}, title = {LBB stability of a mixed Galerkin finite element pair for fluid flow simulations}, issn = {0021-9991}, doi = {10.1016/j.jcp.2008.09.014}, year = {2009}, abstract = {We introduce a new mixed finite element for solving the 2- and 3-dimensional wave equations and equations of incompressible flow. The element, which we refer to as P1(D)-P2, uses discontinuous piecewise linear functions for velocity and continuous piecewise quadratic functions for pressure. The aim of introducing the mixed formulation is to produce a new flexible element choice for triangular and tetrahedral meshes which satisfies the LBB stability condition and hence has no spurious zero-energy modes. The advantage of this particular element choice is that the mass matrix for velocity is block diagonal so it can be trivially inverted; it also allows the order of the pressure to be increased to quadratic whilst maintaining LBB stability which has benefits in geophysical applications with Coriolis forces. We give a normal mode analysis of the semi-discrete wave equation in one dimension which shows that the element pair is stable, and demonstrate that the element is stable with numerical integrations of the wave equation in two dimensions, an analysis of the resultant discrete Laplace operator in two and three dimensions on various meshes which shows that the element pair does not have any spurious modes. We provide convergence tests for the element pair which confirm that the element is stable since the convergence rate of the numerical solution is quadratic.}, language = {en} } @article{ShinSommerReichetal.2010, author = {Shin, Seoleun and Sommer, Matthias and Reich, Sebastian and N{\´e}vir, Peter}, title = {Evaluation of three spatial discretization schemes with the Galewsky et al. test}, issn = {1530-261X}, doi = {10.1002/Asl.279}, year = {2010}, abstract = {We evaluate the Hamiltonian particle methods (HPM) and the Nambu discretization applied to shallow-water equations on the sphere using the test suggested by Galewsky et al. (2004). Both simulations show excellent conservation of energy and are stable in long-term simulation. We repeat the test also using the ICOSWP scheme to compare with the two conservative spatial discretization schemes. The HPM simulation captures the main features of the reference solution, but wave 5 pattern is dominant in the simulations applied on the ICON grid with relatively low spatial resolutions. Nevertheless, agreement in statistics between the three schemes indicates their qualitatively similar behaviors in the long-term integration.}, language = {en} } @article{BergemannReich2010, author = {Bergemann, Kay and Reich, Sebastian}, title = {A localization technique for ensemble Kalman filters}, issn = {0035-9009}, doi = {10.1002/Qj.591}, year = {2010}, abstract = {Ensemble Kalman filter techniques are widely used to assimilate observations into dynamical models. The phase- space dimension is typically much larger than the number of ensemble members, which leads to inaccurate results in the computed covariance matrices. These inaccuracies can lead, among other things, to spurious long-range correlations, which can be eliminated by Schur-product-based localization techniques. In this article, we propose a new technique for implementing such localization techniques within the class of ensemble transform/square-root Kalman filters. Our approach relies on a continuous embedding of the Kalman filter update for the ensemble members, i.e. we state an ordinary differential equation (ODE) with solutions that, over a unit time interval, are equivalent to the Kalman filter update. The ODE formulation forms a gradient system with the observations as a cost functional. Besides localization, the new ODE ensemble formulation should also find useful application in the context of nonlinear observation operators and observations that arrive continuously in time.}, language = {en} } @article{BergemannReich2010, author = {Bergemann, Kay and Reich, Sebastian}, title = {A mollified ensemble Kalman filter}, issn = {0035-9009}, doi = {10.1002/Qj.672}, year = {2010}, abstract = {It is well recognized that discontinuous analysis increments of sequential data assimilation systems, such as ensemble Kalman filters, might lead to spurious high-frequency adjustment processes in the model dynamics. Various methods have been devised to spread out the analysis increments continuously over a fixed time interval centred about the analysis time. Among these techniques are nudging and incremental analysis updates (IAU). Here we propose another alternative, which may be viewed as a hybrid of nudging and IAU and which arises naturally from a recently proposed continuous formulation of the ensemble Kalman analysis step. A new slow-fast extension of the popular Lorenz-96 model is introduced to demonstrate the properties of the proposed mollified ensemble Kalman filter.}, language = {en} } @article{GottwaldMitchellReich2011, author = {Gottwald, Georg A. and Mitchell, Lewis and Reich, Sebastian}, title = {Controlling overestimation of error covariance in ensemble kalman filters with sparse observations a variance-limiting kalman filter}, series = {Monthly weather review}, volume = {139}, journal = {Monthly weather review}, number = {8}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0027-0644}, doi = {10.1175/2011MWR3557.1}, pages = {2650 -- 2667}, year = {2011}, abstract = {The problem of an ensemble Kalman filter when only partial observations are available is considered. In particular, the situation is investigated where the observational space consists of variables that are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. To limit the variance of the latter poorly resolved variables a variance-limiting Kalman filter (VLKF) is derived in a variational setting. The VLKF for a simple linear toy model is analyzed and its range of optimal performance is determined. The VLKF is explored in an ensemble transform setting for the Lorenz-96 system, and it is shown that incorporating the information of the variance of some unobservable variables can improve the skill and also increase the stability of the data assimilation procedure.}, language = {en} } @article{ShinZoellerHolschneideretal.2011, author = {Shin, Seoleun and Z{\"o}ller, Gert and Holschneider, Matthias and Reich, Sebastian}, title = {A multigrid solver for modeling complex interseismic stress fields}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {37}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-3004}, doi = {10.1016/j.cageo.2010.11.011}, pages = {1075 -- 1082}, year = {2011}, abstract = {We develop a multigrid, multiple time stepping scheme to reduce computational efforts for calculating complex stress interactions in a strike-slip 2D planar fault for the simulation of seismicity. The key elements of the multilevel solver are separation of length scale, grid-coarsening, and hierarchy. In this study the complex stress interactions are split into two parts: the first with a small contribution is computed on a coarse level, and the rest for strong interactions is on a fine level. This partition leads to a significant reduction of the number of computations. The reduction of complexity is even enhanced by combining the multigrid with multiple time stepping. Computational efficiency is enhanced by a factor of 10 while retaining a reasonable accuracy, compared to the original full matrix-vortex multiplication. The accuracy of solution and computational efficiency depend on a given cut-off radius that splits multiplications into the two parts. The multigrid scheme is constructed in such a way that it conserves stress in the entire half-space.}, language = {en} } @article{Reich2011, author = {Reich, Sebastian}, title = {A dynamical systems framework for intermittent data assimilation}, series = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, volume = {51}, journal = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0006-3835}, doi = {10.1007/s10543-010-0302-4}, pages = {235 -- 249}, year = {2011}, abstract = {We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.}, language = {en} } @article{SkeelReich2011, author = {Skeel, R. D. and Reich, Sebastian}, title = {Corrected potential energy functions for constrained molecular dynamics}, series = {European physical journal special topics}, volume = {200}, journal = {European physical journal special topics}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2011-01518-8}, pages = {55 -- 72}, year = {2011}, abstract = {Atomic oscillations present in classical molecular dynamics restrict the step size that can be used. Multiple time stepping schemes offer only modest improvements, and implicit integrators are costly and inaccurate. The best approach may be to actually remove the highest frequency oscillations by constraining bond lengths and bond angles, thus permitting perhaps a 4-fold increase in the step size. However, omitting degrees of freedom produces errors in statistical averages, and rigid angles do not bend for strong excluded volume forces. These difficulties can be addressed by an enhanced treatment of holonomic constrained dynamics using ideas from papers of Fixman (1974) and Reich (1995, 1999). In particular, the 1995 paper proposes the use of "flexible" constraints, and the 1999 paper uses a modified potential energy function with rigid constraints to emulate flexible constraints. Presented here is a more direct and rigorous derivation of the latter approach, together with justification for the use of constraints in molecular modeling. With rigor comes limitations, so practical compromises are proposed: simplifications of the equations and their judicious application when assumptions are violated. Included are suggestions for new approaches.}, language = {en} } @article{MalicWeberRichteretal.2011, author = {Malic, E. and Weber, C. and Richter, M. and Atalla, V. and Klamroth, Tillmann and Saalfrank, Peter and Reich, Sebastian and Knorr, A.}, title = {Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.097401}, pages = {4}, year = {2011}, abstract = {The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field.}, language = {en} } @article{ShinReichFrank2012, author = {Shin, Seoleun and Reich, Sebastian and Frank, Jason}, title = {Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modelling}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {138}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {666}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-9009}, doi = {10.1002/qj.982}, pages = {1388 -- 1399}, year = {2012}, abstract = {We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient long-term numerical integration of the atmosphere. In the HPM method, the hydrostatic approximation is interpreted as a holonomic constraint for the vertical position of particles. This can be viewed as defining a set of vertically buoyant horizontal meshes, with the altitude of each mesh point determined so as to satisfy the hydrostatic balance condition and with particles modelling horizontal advection between the moving meshes. We implement the method in a vertical-slice model and evaluate its performance for the simulation of idealized linear and nonlinear orographic flow in both dry and moist environments. The HPM method is able to capture the basic features of the gravity wave to a degree of accuracy comparable with that reported in the literature. The numerical solution in the moist experiment indicates that the influence of moisture on wave characteristics is represented reasonably well and the reduction of momentum flux is in good agreement with theoretical analysis.}, language = {en} } @article{BergemannReich2012, author = {Bergemann, Kay and Reich, Sebastian}, title = {An ensemble Kalman-Bucy filter for continuous data assimilation}, series = {Meteorologische Zeitschrift}, volume = {21}, journal = {Meteorologische Zeitschrift}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0941-2948}, doi = {10.1127/0941-2948/2012/0307}, pages = {213 -- 219}, year = {2012}, abstract = {The ensemble Kalman filter has emerged as a promising filter algorithm for nonlinear differential equations subject to intermittent observations. In this paper, we extend the well-known Kalman-Bucy filter for linear differential equations subject to continous observations to the ensemble setting and nonlinear differential equations. The proposed filter is called the ensemble Kalman-Bucy filter and its performance is demonstrated for a simple mechanical model (Langevin dynamics) subject to incremental observations of its velocity.}, language = {en} } @article{Reich2012, author = {Reich, Sebastian}, title = {A Gaussian-mixture ensemble transform filter}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {138}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {662}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0035-9009}, doi = {10.1002/qj.898}, pages = {222 -- 233}, year = {2012}, abstract = {We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions.}, language = {en} } @article{Reich2013, author = {Reich, Sebastian}, title = {A nonparametric ensemble transform method for bayesian inference}, series = {SIAM journal on scientific computing}, volume = {35}, journal = {SIAM journal on scientific computing}, number = {4}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1064-8275}, doi = {10.1137/130907367}, pages = {A2013 -- A2024}, year = {2013}, abstract = {Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables.}, language = {en} } @article{GreweBrinkopJoeckeletal.2014, author = {Grewe, Volker and Brinkop, Sabine and Joeckel, Patrick and Shin, Seoleun and Reich, Sebastian and Yserentant, Harry}, title = {On the theory of mass conserving transformations for Lagrangian methods in 3D atmosphere-chemistry models}, series = {Meteorologische Zeitschrift}, volume = {23}, journal = {Meteorologische Zeitschrift}, number = {4}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0941-2948}, doi = {10.1127/0941-2948/2014/0552}, pages = {441 -- 447}, year = {2014}, language = {en} } @article{AmezcuaIdeKalnayetal.2014, author = {Amezcua, Javier and Ide, Kayo and Kalnay, Eugenia and Reich, Sebastian}, title = {Ensemble transform Kalman-Bucy filters}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {140}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {680}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-9009}, doi = {10.1002/qj.2186}, pages = {995 -- 1004}, year = {2014}, abstract = {Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.}, language = {en} } @book{VanLeeuwenChengReich2015, author = {Van Leeuwen, Peter Jan and Cheng, Yuan and Reich, Sebastian}, title = {Nonlinear data assimilation}, series = {Frontiers in applied dynamical systems: reviews and tutorials ; 2}, journal = {Frontiers in applied dynamical systems: reviews and tutorials ; 2}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-18346-6}, doi = {10.1007/978-3-319-18347-3}, pages = {xii, 118}, year = {2015}, abstract = {This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.}, language = {en} } @misc{AcevedoReichCubasch2015, author = {Acevedo, Walter and Reich, Sebastian and Cubasch, Ulrich}, title = {Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, volume = {46}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {892}, issn = {1866-8372}, doi = {10.25932/publishup-43636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436363}, pages = {1909 -- 1920}, year = {2015}, abstract = {This paper investigates the applicability of the Vaganov-Shashkin-Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) "switching recording" of 2 variables and (3) bounded response windows leading to "thresholded response". We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL's nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL's formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL's performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.}, language = {en} } @article{EscribanoAkhmatskayaReichetal.2015, author = {Escribano, Bruno and Akhmatskaya, Elena and Reich, Sebastian and Azpiroz, Jon M.}, title = {Multiple-time-stepping generalized hybrid Monte Carlo methods}, series = {Journal of computational physics}, volume = {280}, journal = {Journal of computational physics}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9991}, doi = {10.1016/j.jcp.2014.08.052}, pages = {1 -- 20}, year = {2015}, abstract = {Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2-4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.}, language = {en} } @article{AizingerKornGiorgettaetal.2015, author = {Aizinger, Vadym and Korn, Peter and Giorgetta, Marco and Reich, Sebastian}, title = {Large-scale turbulence modelling via alpha-regularisation for atmospheric simulations}, series = {Journal of turbulence}, volume = {16}, journal = {Journal of turbulence}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1468-5248}, doi = {10.1080/14685248.2014.991443}, pages = {367 -- 391}, year = {2015}, abstract = {We study the possibility of obtaining a computational turbulence model by means of non-dissipative regularisation of the compressible atmospheric equations for climate-type applications. We use an -regularisation (Lagrangian averaging) of the atmospheric equations. For the hydrostatic and compressible atmospheric equations discretised using a finite volume method on unstructured grids, deterministic and non-deterministic numerical experiments are conducted to compare the individual solutions and the statistics of the regularised equations to those of the original model. The impact of the regularisation parameter is investigated. Our results confirm the principal compatibility of -regularisation with atmospheric dynamics and encourage further investigations within atmospheric model including complex physical parametrisations.}, language = {en} } @article{AcevedoReichCubasch2016, author = {Acevedo, Walter and Reich, Sebastian and Cubasch, Ulrich}, title = {Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {46}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-015-2683-1}, pages = {1909 -- 1920}, year = {2016}, abstract = {This paper investigates the applicability of the Vaganov-Shashkin-Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) "switching recording" of 2 variables and (3) bounded response windows leading to "thresholded response". We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL's nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL's formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL's performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.}, language = {en} } @article{GregoryCotterReich2016, author = {Gregory, A. and Cotter, C. J. and Reich, Sebastian}, title = {MULTILEVEL ENSEMBLE TRANSFORM PARTICLE FILTERING}, series = {SIAM journal on scientific computing}, volume = {38}, journal = {SIAM journal on scientific computing}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1064-8275}, doi = {10.1137/15M1038232}, pages = {A1317 -- A1338}, year = {2016}, abstract = {This paper extends the multilevel Monte Carlo variance reduction technique to nonlinear filtering. In particular, multilevel Monte Carlo is applied to a certain variant of the particle filter, the ensemble transform particle filter (EPTF). A key aspect is the use of optimal transport methods to re-establish correlation between coarse and fine ensembles after resampling; this controls the variance of the estimator. Numerical examples present a proof of concept of the effectiveness of the proposed method, demonstrating significant computational cost reductions (relative to the single-level ETPF counterpart) in the propagation of ensembles.}, language = {en} } @article{TaghvaeideWiljesMehtaetal.2017, author = {Taghvaei, Amirhossein and de Wiljes, Jana and Mehta, Prashant G. and Reich, Sebastian}, title = {Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem}, series = {Journal of dynamic systems measurement and control}, volume = {140}, journal = {Journal of dynamic systems measurement and control}, number = {3}, publisher = {ASME}, address = {New York}, issn = {0022-0434}, doi = {10.1115/1.4037780}, pages = {11}, year = {2017}, abstract = {This paper is concerned with the filtering problem in continuous time. Three algorithmic solution approaches for this problem are reviewed: (i) the classical Kalman-Bucy filter, which provides an exact solution for the linear Gaussian problem; (ii) the ensemble Kalman-Bucy filter (EnKBF), which is an approximate filter and represents an extension of the Kalman-Bucy filter to nonlinear problems; and (iii) the feedback particle filter (FPF), which represents an extension of the EnKBF and furthermore provides for a consistent solution in the general nonlinear, non-Gaussian case. The common feature of the three algorithms is the gain times error formula to implement the update step (to account for conditioning due to the observations) in the filter. In contrast to the commonly used sequential Monte Carlo methods, the EnKBF and FPF avoid the resampling of the particles in the importance sampling update step. Moreover, the feedback control structure provides for error correction potentially leading to smaller simulation variance and improved stability properties. The paper also discusses the issue of nonuniqueness of the filter update formula and formulates a novel approximation algorithm based on ideas from optimal transport and coupling of measures. Performance of this and other algorithms is illustrated for a numerical example.}, language = {en} } @article{AcevedoDeWiljesReich2017, author = {Acevedo, Walter and De Wiljes, Jana and Reich, Sebastian}, title = {Second-order accurate ensemble transform particle filters}, series = {SIAM journal on scientific computing}, volume = {39}, journal = {SIAM journal on scientific computing}, number = {5}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1064-8275}, doi = {10.1137/16M1095184}, pages = {A1834 -- A1850}, year = {2017}, abstract = {Particle filters (also called sequential Monte Carlo methods) are widely used for state and parameter estimation problems in the context of nonlinear evolution equations. The recently proposed ensemble transform particle filter (ETPF) [S. Reich, SIAM T. Sci. Comput., 35, (2013), pp. A2013-A2014[ replaces the resampling step of a standard particle filter by a linear transformation which allows for a hybridization of particle filters with ensemble Kalman filters and renders the resulting hybrid filters applicable to spatially extended systems. However, the linear transformation step is computationally expensive and leads to an underestimation of the ensemble spread for small and moderate ensemble sizes. Here we address both of these shortcomings by developing second order accurate extensions of the ETPF. These extensions allow one in particular to replace the exact solution of a linear transport problem by its Sinkhorn approximation. It is also demonstrated that the nonlinear ensemble transform filter arises as a special case of our general framework. We illustrate the performance of the second-order accurate filters for the chaotic Lorenz-63 and Lorenz-96 models and a dynamic scene-viewing model. The numerical results for the Lorenz-63 and Lorenz-96 models demonstrate that significant accuracy improvements can be achieved in comparison to a standard ensemble Kalman filter and the ETPF for small to moderate ensemble sizes. The numerical results for the scene-viewing model reveal, on the other hand, that second-order corrections can lead to statistically inconsistent samples from the posterior parameter distribution.}, language = {en} } @article{SchuettRothkegelTrukenbrodetal.2017, author = {Sch{\"u}tt, Heiko Herbert and Rothkegel, Lars Oliver Martin and Trukenbrod, Hans Arne and Reich, Sebastian and Wichmann, Felix A. and Engbert, Ralf}, title = {Likelihood-based parameter estimation and comparison of dynamical cognitive models}, series = {Psychological Review}, volume = {124}, journal = {Psychological Review}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0033-295X}, doi = {10.1037/rev0000068}, pages = {505 -- 524}, year = {2017}, abstract = {Dynamical models of cognition play an increasingly important role in driving theoretical and experimental research in psychology. Therefore, parameter estimation, model analysis and comparison of dynamical models are of essential importance. In this article, we propose a maximum likelihood approach for model analysis in a fully dynamical framework that includes time-ordered experimental data. Our methods can be applied to dynamical models for the prediction of discrete behavior (e.g., movement onsets); in particular, we use a dynamical model of saccade generation in scene viewing as a case study for our approach. For this model, the likelihood function can be computed directly by numerical simulation, which enables more efficient parameter estimation including Bayesian inference to obtain reliable estimates and corresponding credible intervals. Using hierarchical models inference is even possible for individual observers. Furthermore, our likelihood approach can be used to compare different models. In our example, the dynamical framework is shown to outperform nondynamical statistical models. Additionally, the likelihood based evaluation differentiates model variants, which produced indistinguishable predictions on hitherto used statistics. Our results indicate that the likelihood approach is a promising framework for dynamical cognitive models.}, language = {en} } @misc{AcevedoFallahReichetal.2017, author = {Acevedo, Walter and Fallah, Bijan and Reich, Sebastian and Cubasch, Ulrich}, title = {Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {627}, issn = {1866-8372}, doi = {10.25932/publishup-41874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418743}, pages = {545 -- 557}, year = {2017}, abstract = {Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.}, language = {en} } @article{AcevedoFallahReichetal.2017, author = {Acevedo, Walter and Fallah, Bijan and Reich, Sebastian and Cubasch, Ulrich}, title = {Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-545-2017}, pages = {545 -- 557}, year = {2017}, abstract = {Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.}, language = {en} } @article{AsgarimehrWickertReich2018, author = {Asgarimehr, Milad and Wickert, Jens and Reich, Sebastian}, title = {TDS-1 GNSS Reflectometry}, series = {IEEE journal of selected topics in applied earth observations and remote sensing}, volume = {11}, journal = {IEEE journal of selected topics in applied earth observations and remote sensing}, number = {11}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1939-1404}, doi = {10.1109/JSTARS.2018.2873241}, pages = {4534 -- 4541}, year = {2018}, abstract = {This study presents the development and a systematic evaluation study of GNSS reflectometry wind speeds. After establishing a wind speed retrieval algorithm, UK TechDemoSat-1 (TDS-1) derived winds, from May 2015 to July 2017, are compared to the Advanced Scatterometer (ASCAT). ERA-Interim wind fields of the European Centre for Medium-range Weather Forecasts (ECMWF) and in situ observation from Tropical Atmosphere Ocean buoy array in the Pacific are taken as reference. One-year averaged TDS-1 global winds demonstrate small differences with ECMWF in a majority of areas as well as discuss under- and overestimations. The pioneering TDS-1 winds demonstrate a root-mean-squared error (RMSE) and bias of 2.77 and -0.33 m/s, which are comparable to the RMSE and bias derived by ASCAT winds, as large as 2.31 and 0.25 m/s, respectively. Using buoys measurements as reference, RMSE and bias of 2.23 and -0.03 m/s for TDS-1 as well as 1.40 and -0.68 m/s for ASCAT are obtained. Utilizing rain microwave-infrared estimates of the Tropical Rainfall Measuring Mission, rain-affected observation of both ASCAT and TDS-1 are collected and evaluated. Although ASCAT winds show a significant performance degradation resulting in an RMSE and bias of 3.16 and 1.03 m/s, respectively, during rain condition, TDS-1 shows a more reliable performance with an RMSE and bias of 2.94 and -0.21 m/s, respectively, which indicates the promising capability of GNSS forward scattering for wind retrievals during rain. A decrease in TDS-1-derived bistatic radar cross sections during rain events, at weak winds, is also demonstrated.}, language = {en} } @article{AsgarimehrZavorotnyWickertetal.2018, author = {Asgarimehr, Milad and Zavorotny, Valery and Wickert, Jens and Reich, Sebastian}, title = {Can GNSS Reflectometry Detect Precipitation Over Oceans?}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL079708}, pages = {12585 -- 12592}, year = {2018}, abstract = {For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS-R) observations is demonstrated. Based on the argument that the forward quasi-specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS-R measurements are not sensitive to the surface small-scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section sigma(0) derived from TechDemoSat-1 data is reduced due to rain at weak winds, lower than approximate to 6 m/s. The decrease is as large as approximate to 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0-2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS-R technique to detect precipitation over oceans at low winds.}, language = {en} } @article{deWiljesReichStannat2018, author = {de Wiljes, Jana and Reich, Sebastian and Stannat, Wilhelm}, title = {Long-Time stability and accuracy of the ensemble Kalman-Bucy Filter for fully observed processes and small measurement noise}, series = {SIAM Journal on Applied Dynamical Systems}, volume = {17}, journal = {SIAM Journal on Applied Dynamical Systems}, number = {2}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1536-0040}, doi = {10.1137/17M1119056}, pages = {1152 -- 1181}, year = {2018}, abstract = {The ensemble Kalman filter has become a popular data assimilation technique in the geosciences. However, little is known theoretically about its long term stability and accuracy. In this paper, we investigate the behavior of an ensemble Kalman-Bucy filter applied to continuous-time filtering problems. We derive mean field limiting equations as the ensemble size goes to infinity as well as uniform-in-time accuracy and stability results for finite ensemble sizes. The later results require that the process is fully observed and that the measurement noise is small. We also demonstrate that our ensemble Kalman-Bucy filter is consistent with the classic Kalman-Bucy filter for linear systems and Gaussian processes. We finally verify our theoretical findings for the Lorenz-63 system.}, language = {en} } @article{LeungLeutbecherReichetal.2019, author = {Leung, Tsz Yan and Leutbecher, Martin and Reich, Sebastian and Shepherd, Theodore G.}, title = {Atmospheric Predictability: Revisiting the Inherent Finite-Time Barrier}, series = {Journal of the atmospheric sciences}, volume = {76}, journal = {Journal of the atmospheric sciences}, number = {12}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0022-4928}, doi = {10.1175/JAS-D-19-0057.1}, pages = {3883 -- 3892}, year = {2019}, abstract = {The accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz's 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier-Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz's theory. Aided by numerical simulations, the present work reexamines Lorenz's model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than -3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, the spectral slope is steeper than -3, then the breakdown does not occur. In this way, the apparent contradiction between the analytic results and Lorenz's theory is reconciled.}, language = {en} } @misc{AsgarimehrWickertReich2019, author = {Asgarimehr, Milad and Wickert, Jens and Reich, Sebastian}, title = {Evaluating impact of rain attenuation on space-borne GNSS Reflectometry wind speeds}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1132}, issn = {1866-8372}, doi = {10.25932/publishup-47344}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473441}, pages = {20}, year = {2019}, abstract = {The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30 degrees, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as approximate to 0.65 m/s (2\%), 1.00 m/s (3\%), and 1.3 m/s (4\%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments.}, language = {en} } @misc{NueskenReichRozdeba2019, author = {N{\"u}sken, Nikolas and Reich, Sebastian and Rozdeba, Paul J.}, title = {State and parameter estimation from observed signal increments}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {916}, issn = {1866-8372}, doi = {10.25932/publishup-44260}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442609}, pages = {25}, year = {2019}, abstract = {The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean-Vlasov equations as the starting point to derive ensemble Kalman-Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems.}, language = {en} } @misc{vanLeeuwenKunschNergeretal.2019, author = {van Leeuwen, Peter Jan and Kunsch, Hans R. and Nerger, Lars and Potthast, Roland and Reich, Sebastian}, title = {Particle filters for high-dimensional geoscience applications: A review}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {145}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {723}, publisher = {Wiley}, address = {Hoboken}, issn = {0035-9009}, doi = {10.1002/qj.3551}, pages = {2335 -- 2365}, year = {2019}, abstract = {Particle filters contain the promise of fully nonlinear data assimilation. They have been applied in numerous science areas, including the geosciences, but their application to high-dimensional geoscience systems has been limited due to their inefficiency in high-dimensional systems in standard settings. However, huge progress has been made, and this limitation is disappearing fast due to recent developments in proposal densities, the use of ideas from (optimal) transportation, the use of localization and intelligent adaptive resampling strategies. Furthermore, powerful hybrids between particle filters and ensemble Kalman filters and variational methods have been developed. We present a state-of-the-art discussion of present efforts of developing particle filters for high-dimensional nonlinear geoscience state-estimation problems, with an emphasis on atmospheric and oceanic applications, including many new ideas, derivations and unifications, highlighting hidden connections, including pseudo-code, and generating a valuable tool and guide for the community. Initial experiments show that particle filters can be competitive with present-day methods for numerical weather prediction, suggesting that they will become mainstream soon.}, language = {en} } @article{Reich2019, author = {Reich, Sebastian}, title = {Data assimilation}, series = {Acta numerica}, volume = {28}, journal = {Acta numerica}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0962-4929}, doi = {10.1017/S0962492919000011}, pages = {635 -- 711}, year = {2019}, abstract = {Data assimilation addresses the general problem of how to combine model-based predictions with partial and noisy observations of the process in an optimal manner. This survey focuses on sequential data assimilation techniques using probabilistic particle-based algorithms. In addition to surveying recent developments for discrete- and continuous-time data assimilation, both in terms of mathematical foundations and algorithmic implementations, we also provide a unifying framework from the perspective of coupling of measures, and Schr{\"o}dinger's boundary value problem for stochastic processes in particular.}, language = {en} } @article{NueskenReichRozdeba2019, author = {N{\"u}sken, Nikolas and Reich, Sebastian and Rozdeba, Paul J.}, title = {State and parameter estimation from observed signal increments}, series = {Entropy : an international and interdisciplinary journal of entropy and information studies}, volume = {21}, journal = {Entropy : an international and interdisciplinary journal of entropy and information studies}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e21050505}, pages = {23}, year = {2019}, abstract = {The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean-Vlasov equations as the starting point to derive ensemble Kalman-Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems.}, language = {en} } @article{AsgarimehrWickertReich2019, author = {Asgarimehr, Milad and Wickert, Jens and Reich, Sebastian}, title = {Evaluating impact of rain attenuation on space-borne GNSS reflectometry wind speeds}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11091048}, pages = {18}, year = {2019}, abstract = {The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30 degrees, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as approximate to 0.65 m/s (2\%), 1.00 m/s (3\%), and 1.3 m/s (4\%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments.}, language = {en} } @article{SomogyvariReich2020, author = {Somogyv{\´a}ri, M{\´a}rk and Reich, Sebastian}, title = {Convergence tests for transdimensional Markov chains in geoscience imaging}, series = {Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences}, volume = {52}, journal = {Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-8961}, doi = {10.1007/s11004-019-09811-x}, pages = {651 -- 668}, year = {2020}, abstract = {Classic inversion methods adjust a model with a predefined number of parameters to the observed data. With transdimensional inversion algorithms such as the reversible-jump Markov chain Monte Carlo (rjMCMC), it is possible to vary this number during the inversion and to interpret the observations in a more flexible way. Geoscience imaging applications use this behaviour to automatically adjust model resolution to the inhomogeneities of the investigated system, while keeping the model parameters on an optimal level. The rjMCMC algorithm produces an ensemble as result, a set of model realizations, which together represent the posterior probability distribution of the investigated problem. The realizations are evolved via sequential updates from a randomly chosen initial solution and converge toward the target posterior distribution of the inverse problem. Up to a point in the chain, the realizations may be strongly biased by the initial model, and must be discarded from the final ensemble. With convergence assessment techniques, this point in the chain can be identified. Transdimensional MCMC methods produce ensembles that are not suitable for classic convergence assessment techniques because of the changes in parameter numbers. To overcome this hurdle, three solutions are introduced to convert model realizations to a common dimensionality while maintaining the statistical characteristics of the ensemble. A scalar, a vector and a matrix representation for models is presented, inferred from tomographic subsurface investigations, and three classic convergence assessment techniques are applied on them. It is shown that appropriately chosen scalar conversions of the models could retain similar statistical ensemble properties as geologic projections created by rasterization.}, language = {en} } @article{GarbunoInigoNueskenReich2020, author = {Garbuno-Inigo, Alfredo and N{\"u}sken, Nikolas and Reich, Sebastian}, title = {Affine invariant interacting Langevin dynamics for Bayesian inference}, series = {SIAM journal on applied dynamical systems}, volume = {19}, journal = {SIAM journal on applied dynamical systems}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1536-0040}, doi = {10.1137/19M1304891}, pages = {1633 -- 1658}, year = {2020}, abstract = {We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of nondegeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem.}, language = {en} } @article{MaoutsaReichOpper2020, author = {Maoutsa, Dimitra and Reich, Sebastian and Opper, Manfred}, title = {Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e22080802}, pages = {35}, year = {2020}, abstract = {Fokker-Planck equations are extensively employed in various scientific fields as they characterise the behaviour of stochastic systems at the level of probability density functions. Although broadly used, they allow for analytical treatment only in limited settings, and often it is inevitable to resort to numerical solutions. Here, we develop a computational approach for simulating the time evolution of Fokker-Planck solutions in terms of a mean field limit of an interacting particle system. The interactions between particles are determined by the gradient of the logarithm of the particle density, approximated here by a novel statistical estimator. The performance of our method shows promising results, with more accurate and less fluctuating statistics compared to direct stochastic simulations of comparable particle number. Taken together, our framework allows for effortless and reliable particle-based simulations of Fokker-Planck equations in low and moderate dimensions. The proposed gradient-log-density estimator is also of independent interest, for example, in the context of optimal control.}, language = {en} } @article{LeungLeutbecherReichetal.2020, author = {Leung, Tsz Yan and Leutbecher, Martin and Reich, Sebastian and Shepherd, Theodore G.}, title = {Impact of the mesoscale range on error growth and the limits to atmospheric predictability}, series = {Journal of the atmospheric sciences}, volume = {77}, journal = {Journal of the atmospheric sciences}, number = {11}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0022-4928}, doi = {10.1175/JAS-D-19-0346.1}, pages = {3769 -- 3779}, year = {2020}, abstract = {Global numerical weather prediction (NWP) models have begun to resolve the mesoscale k(-5/3) range of the energy spectrum, which is known to impose an inherently finite range of deterministic predictability per se as errors develop more rapidly on these scales than on the larger scales. However, the dynamics of these errors under the influence of the synoptic-scale k(-3) range is little studied. Within a perfect-model context, the present work examines the error growth behavior under such a hybrid spectrum in Lorenz's original model of 1969, and in a series of identical-twin perturbation experiments using an idealized two-dimensional barotropic turbulence model at a range of resolutions. With the typical resolution of today's global NWP ensembles, error growth remains largely uniform across scales. The theoretically expected fast error growth characteristic of a k(-5/3) spectrum is seen to be largely suppressed in the first decade of the mesoscale range by the synoptic-scale k(-3) range. However, it emerges once models become fully able to resolve features on something like a 20-km scale, which corresponds to a grid resolution on the order of a few kilometers.}, language = {en} } @article{SeeligRabeMalemShinitskietal.2020, author = {Seelig, Stefan A. and Rabe, Maximilian Michael and Malem-Shinitski, Noa and Risse, Sarah and Reich, Sebastian and Engbert, Ralf}, title = {Bayesian parameter estimation for the SWIFT model of eye-movement control during reading}, series = {Journal of mathematical psychology}, volume = {95}, journal = {Journal of mathematical psychology}, publisher = {Elsevier}, address = {San Diego}, issn = {0022-2496}, doi = {10.1016/j.jmp.2019.102313}, pages = {32}, year = {2020}, abstract = {Process-oriented theories of cognition must be evaluated against time-ordered observations. Here we present a representative example for data assimilation of the SWIFT model, a dynamical model of the control of fixation positions and fixation durations during natural reading of single sentences. First, we develop and test an approximate likelihood function of the model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal likelihood obtained by probability density approximation Second, we implement a Bayesian approach to parameter inference using an adaptive Markov chain Monte Carlo procedure. Our results indicate that model parameters can be estimated reliably for individual subjects. We conclude that approximative Bayesian inference represents a considerable step forward for computational models of eye-movement control, where modeling of individual data on the basis of process-based dynamic models has not been possible so far.}, language = {en} } @article{MalemShinitskiOpperReichetal.2020, author = {Malem-Shinitski, Noa and Opper, Manfred and Reich, Sebastian and Schwetlick, Lisa and Seelig, Stefan A. and Engbert, Ralf}, title = {A mathematical model of local and global attention in natural scene viewing}, series = {PLoS Computational Biology : a new community journal}, volume = {16}, journal = {PLoS Computational Biology : a new community journal}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1007880}, pages = {21}, year = {2020}, abstract = {Author summary
Switching between local and global attention is a general strategy in human information processing. We investigate whether this strategy is a viable approach to model sequences of fixations generated by a human observer in a free viewing task with natural scenes. Variants of the basic model are used to predict the experimental data based on Bayesian inference. Results indicate a high predictive power for both aggregated data and individual differences across observers. The combination of a novel model with state-of-the-art Bayesian methods lends support to our two-state model using local and global internal attention states for controlling eye movements.
Understanding the decision process underlying gaze control is an important question in cognitive neuroscience with applications in diverse fields ranging from psychology to computer vision. The decision for choosing an upcoming saccade target can be framed as a selection process between two states: Should the observer further inspect the information near the current gaze position (local attention) or continue with exploration of other patches of the given scene (global attention)? Here we propose and investigate a mathematical model motivated by switching between these two attentional states during scene viewing. The model is derived from a minimal set of assumptions that generates realistic eye movement behavior. We implemented a Bayesian approach for model parameter inference based on the model's likelihood function. In order to simplify the inference, we applied data augmentation methods that allowed the use of conjugate priors and the construction of an efficient Gibbs sampler. This approach turned out to be numerically efficient and permitted fitting interindividual differences in saccade statistics. Thus, the main contribution of our modeling approach is two-fold; first, we propose a new model for saccade generation in scene viewing. Second, we demonstrate the use of novel methods from Bayesian inference in the field of scan path modeling.}, language = {en} } @article{deWiljesPathirajaReich2020, author = {de Wiljes, Jana and Pathiraja, Sahani Darschika and Reich, Sebastian}, title = {Ensemble transform algorithms for nonlinear smoothing problems}, series = {SIAM journal on scientific computing}, volume = {42}, journal = {SIAM journal on scientific computing}, number = {1}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1064-8275}, doi = {10.1137/19M1239544}, pages = {A87 -- A114}, year = {2020}, abstract = {Several numerical tools designed to overcome the challenges of smoothing in a non-linear and non-Gaussian setting are investigated for a class of particle smoothers. The considered family of smoothers is induced by the class of linear ensemble transform filters which contains classical filters such as the stochastic ensemble Kalman filter, the ensemble square root filter, and the recently introduced nonlinear ensemble transform filter. Further the ensemble transform particle smoother is introduced and particularly highlighted as it is consistent in the particle limit and does not require assumptions with respect to the family of the posterior distribution. The linear update pattern of the considered class of linear ensemble transform smoothers allows one to implement important supplementary techniques such as adaptive spread corrections, hybrid formulations, and localization in order to facilitate their application to complex estimation problems. These additional features are derived and numerically investigated for a sequence of increasingly challenging test problems.}, language = {en} } @article{GottwaldReich2021, author = {Gottwald, Georg A. and Reich, Sebastian}, title = {Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {31}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {AIP}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0066080}, pages = {8}, year = {2021}, abstract = {We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework, a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens's embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data.}, language = {en} } @article{GottwaldReich2021, author = {Gottwald, Georg A. and Reich, Sebastian}, title = {Supervised learning from noisy observations}, series = {Physica : D, Nonlinear phenomena}, volume = {423}, journal = {Physica : D, Nonlinear phenomena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2021.132911}, pages = {15}, year = {2021}, abstract = {Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data -driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems. (C) 2021 Elsevier B.V. All rights reserved.}, language = {en} } @article{ReichWeissmann2021, author = {Reich, Sebastian and Weissmann, Simon}, title = {Fokker-Planck particle systems for Bayesian inference: computational approaches}, series = {SIAM ASA journal on uncertainty quantification}, volume = {9}, journal = {SIAM ASA journal on uncertainty quantification}, number = {2}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {2166-2525}, doi = {10.1137/19M1303162}, pages = {446 -- 482}, year = {2021}, abstract = {Bayesian inference can be embedded into an appropriately defined dynamics in the space of probability measures. In this paper, we take Brownian motion and its associated Fokker-Planck equation as a starting point for such embeddings and explore several interacting particle approximations. More specifically, we consider both deterministic and stochastic interacting particle systems and combine them with the idea of preconditioning by the empirical covariance matrix. In addition to leading to affine invariant formulations which asymptotically speed up convergence, preconditioning allows for gradient-free implementations in the spirit of the ensemble Kalman filter. While such gradient-free implementations have been demonstrated to work well for posterior measures that are nearly Gaussian, we extend their scope of applicability to multimodal measures by introducing localized gradient-free approximations. Numerical results demonstrate the effectiveness of the considered methodologies.}, language = {en} } @article{HastermannReinhardtKleinetal.2021, author = {Hastermann, Gottfried and Reinhardt, Maria and Klein, Rupert and Reich, Sebastian}, title = {Balanced data assimilation for highly oscillatory mechanical systems}, series = {Communications in applied mathematics and computational science : CAMCoS}, volume = {16}, journal = {Communications in applied mathematics and computational science : CAMCoS}, number = {1}, publisher = {Mathematical Sciences Publishers}, address = {Berkeley}, issn = {1559-3940}, doi = {10.2140/camcos.2021.16.119}, pages = {119 -- 154}, year = {2021}, abstract = {Data assimilation algorithms are used to estimate the states of a dynamical system using partial and noisy observations. The ensemble Kalman filter has become a popular data assimilation scheme due to its simplicity and robustness for a wide range of application areas. Nevertheless, this filter also has limitations due to its inherent assumptions of Gaussianity and linearity, which can manifest themselves in the form of dynamically inconsistent state estimates. This issue is investigated here for balanced, slowly evolving solutions to highly oscillatory Hamiltonian systems which are prototypical for applications in numerical weather prediction. It is demonstrated that the standard ensemble Kalman filter can lead to state estimates that do not satisfy the pertinent balance relations and ultimately lead to filter divergence. Two remedies are proposed, one in terms of blended asymptotically consistent time-stepping schemes, and one in terms of minimization-based postprocessing methods. The effects of these modifications to the standard ensemble Kalman filter are discussed and demonstrated numerically for balanced motions of two prototypical Hamiltonian reference systems.}, language = {en} } @article{PathirajaReichStannat2021, author = {Pathiraja, Sahani Darschika and Reich, Sebastian and Stannat, Wilhelm}, title = {McKean-Vlasov SDEs in nonlinear filtering}, series = {SIAM journal on control and optimization : a publication of the Society for Industrial and Applied Mathematics}, volume = {59}, journal = {SIAM journal on control and optimization : a publication of the Society for Industrial and Applied Mathematics}, number = {6}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {0363-0129}, doi = {10.1137/20M1355197}, pages = {4188 -- 4215}, year = {2021}, abstract = {Various particle filters have been proposed over the last couple of decades with the common feature that the update step is governed by a type of control law. This feature makes them an attractive alternative to traditional sequential Monte Carlo which scales poorly with the state dimension due to weight degeneracy. This article proposes a unifying framework that allows us to systematically derive the McKean-Vlasov representations of these filters for the discrete time and continuous time observation case, taking inspiration from the smooth approximation of the data considered in [D. Crisan and J. Xiong, Stochastics, 82 (2010), pp. 53-68; J. M. Clark and D. Crisan, Probab. Theory Related Fields, 133 (2005), pp. 43-56]. We consider three filters that have been proposed in the literature and use this framework to derive Ito representations of their limiting forms as the approximation parameter delta -> 0. All filters require the solution of a Poisson equation defined on R-d, for which existence and uniqueness of solutions can be a nontrivial issue. We additionally establish conditions on the signal-observation system that ensures well-posedness of the weighted Poisson equation arising in one of the filters.}, language = {en} } @article{LeungLeutbecherReichetal.2021, author = {Leung, Tsz Yan and Leutbecher, Martin and Reich, Sebastian and Shepherd, Theodore G.}, title = {Forecast verification}, series = {Quarterly journal of the Royal Meteorological Society}, volume = {147}, journal = {Quarterly journal of the Royal Meteorological Society}, number = {739}, publisher = {Wiley}, address = {Hoboken}, issn = {0035-9009}, doi = {10.1002/qj.4120}, pages = {3124 -- 3134}, year = {2021}, abstract = {The philosophy of forecast verification is rather different between deterministic and probabilistic verification metrics: generally speaking, deterministic metrics measure differences, whereas probabilistic metrics assess reliability and sharpness of predictive distributions. This article considers the root-mean-square error (RMSE), which can be seen as a deterministic metric, and the probabilistic metric Continuous Ranked Probability Score (CRPS), and demonstrates that under certain conditions, the CRPS can be mathematically expressed in terms of the RMSE when these metrics are aggregated. One of the required conditions is the normality of distributions. The other condition is that, while the forecast ensemble need not be calibrated, any bias or over/underdispersion cannot depend on the forecast distribution itself. Under these conditions, the CRPS is a fraction of the RMSE, and this fraction depends only on the heteroscedasticity of the ensemble spread and the measures of calibration. The derived CRPS-RMSE relationship for the case of perfect ensemble reliability is tested on simulations of idealised two-dimensional barotropic turbulence. Results suggest that the relationship holds approximately despite the normality condition not being met.}, language = {en} } @article{WormellReich2021, author = {Wormell, Caroline L. and Reich, Sebastian}, title = {Spectral convergence of diffusion maps}, series = {SIAM journal on numerical analysis / Society for Industrial and Applied Mathematics}, volume = {59}, journal = {SIAM journal on numerical analysis / Society for Industrial and Applied Mathematics}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {0036-1429}, doi = {10.1137/20M1344093}, pages = {1687 -- 1734}, year = {2021}, abstract = {Diffusion maps is a manifold learning algorithm widely used for dimensionality reduction. Using a sample from a distribution, it approximates the eigenvalues and eigenfunctions of associated Laplace-Beltrami operators. Theoretical bounds on the approximation error are, however, generally much weaker than the rates that are seen in practice. This paper uses new approaches to improve the error bounds in the model case where the distribution is supported on a hypertorus. For the data sampling (variance) component of the error we make spatially localized compact embedding estimates on certain Hardy spaces; we study the deterministic (bias) component as a perturbation of the Laplace-Beltrami operator's associated PDE and apply relevant spectral stability results. Using these approaches, we match long-standing pointwise error bounds for both the spectral data and the norm convergence of the operator discretization. We also introduce an alternative normalization for diffusion maps based on Sinkhorn weights. This normalization approximates a Langevin diffusion on the sample and yields a symmetric operator approximation. We prove that it has better convergence compared with the standard normalization on flat domains, and we present a highly efficient rigorous algorithm to compute the Sinkhorn weights.}, language = {en} } @article{EngbertRabeKliegletal.2021, author = {Engbert, Ralf and Rabe, Maximilian Michael and Kliegl, Reinhold and Reich, Sebastian}, title = {Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics}, series = {Bulletin of mathematical biology : official journal of the Society for Mathematical Biology}, volume = {83}, journal = {Bulletin of mathematical biology : official journal of the Society for Mathematical Biology}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0092-8240}, doi = {10.1007/s11538-020-00834-8}, pages = {16}, year = {2021}, abstract = {Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach.}, language = {en} } @article{EngbertRabeSchwetlicketal.2022, author = {Engbert, Ralf and Rabe, Maximilian Michael and Schwetlick, Lisa and Seelig, Stefan A. and Reich, Sebastian and Vasishth, Shravan}, title = {Data assimilation in dynamical cognitive science}, series = {Trends in cognitive sciences}, volume = {26}, journal = {Trends in cognitive sciences}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-6613}, doi = {10.1016/j.tics.2021.11.006}, pages = {99 -- 102}, year = {2022}, abstract = {Dynamical models make specific assumptions about cognitive processes that generate human behavior. In data assimilation, these models are tested against timeordered data. Recent progress on Bayesian data assimilation demonstrates that this approach combines the strengths of statistical modeling of individual differences with the those of dynamical cognitive models.}, language = {en} } @article{MolkenthinDonnerReichetal.2022, author = {Molkenthin, Christian and Donner, Christian and Reich, Sebastian and Z{\"o}ller, Gert and Hainzl, Sebastian and Holschneider, Matthias and Opper, Manfred}, title = {GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model}, series = {Statistics and Computing}, volume = {32}, journal = {Statistics and Computing}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3174}, doi = {10.1007/s11222-022-10085-3}, pages = {25}, year = {2022}, abstract = {The spatio-temporal epidemic type aftershock sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a fully Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l'Aquila region, Italy, with the devastating event on 6 April 2009, is presented.}, language = {en} }