@article{Reich2011, author = {Reich, Sebastian}, title = {A dynamical systems framework for intermittent data assimilation}, series = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, volume = {51}, journal = {BIT : numerical mathematics ; the leading applied mathematics journal for all computational mathematicians}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0006-3835}, doi = {10.1007/s10543-010-0302-4}, pages = {235 -- 249}, year = {2011}, abstract = {We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.}, language = {en} } @article{AcevedoReichCubasch2016, author = {Acevedo, Walter and Reich, Sebastian and Cubasch, Ulrich}, title = {Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {46}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-015-2683-1}, pages = {1909 -- 1920}, year = {2016}, abstract = {This paper investigates the applicability of the Vaganov-Shashkin-Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) "switching recording" of 2 variables and (3) bounded response windows leading to "thresholded response". We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL's nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL's formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL's performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.}, language = {en} }