@article{SprengerRudackSchudomaetal.2015, author = {Sprenger, Heike and Rudack, Katharina and Schudoma, Christian and Neumann, Arne and Seddig, Sylvia and Peters, Rolf and Zuther, Ellen and Kopka, Joachim and Hincha, Dirk K. and Walther, Dirk and Koehl, Karin}, title = {Assessment of drought tolerance and its potential yield penalty in potato}, series = {Functional plant biology : an international journal of plant function}, volume = {42}, journal = {Functional plant biology : an international journal of plant function}, number = {7}, publisher = {CSIRO}, address = {Clayton}, issn = {1445-4408}, doi = {10.1071/FP15013}, pages = {655 -- 667}, year = {2015}, abstract = {Climate models predict an increased likelihood of seasonal droughts for many areas of the world. Breeding for drought tolerance could be accelerated by marker-assisted selection. As a basis for marker identification, we studied the genetic variance, predictability of field performance and potential costs of tolerance in potato (Solanum tuberosum L.). Potato produces high calories per unit of water invested, but is drought-sensitive. In 14 independent pot or field trials, 34 potato cultivars were grown under optimal and reduced water supply to determine starch yield. In an artificial dataset, we tested several stress indices for their power to distinguish tolerant and sensitive genotypes independent of their yield potential. We identified the deviation of relative starch yield from the experimental median (DRYM) as the most efficient index. DRYM corresponded qualitatively to the partial least square model-based metric of drought stress tolerance in a stress effect model. The DRYM identified significant tolerance variation in the European potato cultivar population to allow tolerance breeding and marker identification. Tolerance results from pot trials correlated with those from field trials but predicted field performance worse than field growth parameters. Drought tolerance correlated negatively with yield under optimal conditions in the field. The distribution of yield data versus DRYM indicated that tolerance can be combined with average yield potentials, thus circumventing potential yield penalties in tolerance breeding.}, language = {en} }