@phdthesis{Ostrowski2018, author = {Ostrowski, Max}, title = {Modern constraint answer set solving}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407799}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Answer Set Programming (ASP) is a declarative problem solving approach, combining a rich yet simple modeling language with high-performance solving capabilities. Although this has already resulted in various applications, certain aspects of such applications are more naturally modeled using variables over finite domains, for accounting for resources, fine timings, coordinates, or functions. Our goal is thus to extend ASP with constraints over integers while preserving its declarative nature. This allows for fast prototyping and elaboration tolerant problem descriptions of resource related applications. The resulting paradigm is called Constraint Answer Set Programming (CASP). We present three different approaches for solving CASP problems. The first one, a lazy, modular approach combines an ASP solver with an external system for handling constraints. This approach has the advantage that two state of the art technologies work hand in hand to solve the problem, each concentrating on its part of the problem. The drawback is that inter-constraint dependencies cannot be communicated back to the ASP solver, impeding its learning algorithm. The second approach translates all constraints to ASP. Using the appropriate encoding techniques, this results in a very fast, monolithic system. Unfortunately, due to the large, explicit representation of constraints and variables, translation techniques are restricted to small and mid-sized domains. The third approach merges the lazy and the translational approach, combining the strength of both while removing their weaknesses. To this end, we enhance the dedicated learning techniques of an ASP solver with the inferences of the translating approach in a lazy way. That is, the important knowledge is only made explicit when needed. By using state of the art techniques from neighboring fields, we provide ways to tackle real world, industrial size problems. By extending CASP to reactive solving, we open up new application areas such as online planning with continuous domains and durations.}, language = {en} } @misc{OstrowskiSchaub2012, author = {Ostrowski, Max and Schaub, Torsten H.}, title = {ASP modulo CSP}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {579}, issn = {1866-8372}, doi = {10.25932/publishup-41390}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413908}, pages = {19}, year = {2012}, abstract = {We present the hybrid ASP solver clingcon, combining the simple modeling language and the high performance Boolean solving capacities of Answer Set Programming (ASP) with techniques for using non-Boolean constraints from the area of Constraint Programming (CP). The new clingcon system features an extended syntax supporting global constraints and optimize statements for constraint variables. The major technical innovation improves the interaction between ASP and CP solver through elaborated learning techniques based on irreducible inconsistent sets. A broad empirical evaluation shows that these techniques yield a performance improvement of an order of magnitude.}, language = {en} } @misc{DurzinskyMarwanOstrowskietal.2011, author = {Durzinsky, Markus and Marwan, Wolfgang and Ostrowski, Max and Schaub, Torsten H. and Wagler, Annegret}, title = {Automatic network reconstruction using ASP}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {560}, issn = {1866-8372}, doi = {10.25932/publishup-41241}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412419}, pages = {18}, year = {2011}, abstract = {Building biological models by inferring functional dependencies from experimental data is an important issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available approaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuristic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by appeal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several benefits over the existing heuristic algorithms. First, it is declarative and thus transparent for biological experts. Second, it is elaboration tolerant and thus allows for an easy exploration and incorporation of biological constraints. Third, it allows for exploring the entire space of possible models. Finally, our approach offers an excellent performance, matching existing, special-purpose systems.}, language = {en} }