@article{JungingerRollerOlakaetal.2014, author = {Junginger, Annett and Roller, Sybille and Olaka, Lydia A. and Trauth, Martin H.}, title = {The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15-5 ka BP)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {396}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2013.12.007}, pages = {1 -- 16}, year = {2014}, abstract = {The water-level record from the 300 m deep paleo-lake Suguta (Northern Kenya Rift) during the African Humid Period (AHP, 15-5 ka BP) helps to explain decadal to centennial intensity variations in the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). This water-level record was derived from three different sources: (1) grain size variations in radiocarbon dated and reservoir corrected lacustrine sediments, (2) the altitudes and ages of paleo-shorelines within the basin, and (3) the results of hydro-balance modeling, providing important insights into the character of water level variations (abrupt or gradual) in the amplifier paleo-Lake Suguta. The results of these comprehensive analyses suggest that the AHP highstand in the Suguta Valley was the direct consequence of a northeastwards shift in the Congo Air Boundary (CAB), which was in turn caused by an enhanced atmospheric pressure gradient between East Africa and India during a northern hemisphere insolation maximum. Rapidly decreasing water levels of up to 90 m over less than a hundred years are best explained by changes in solar irradiation either reducing the East African-Indian atmospheric pressure gradient and preventing the CAB from reaching the study area, or reducing the overall humidity in the atmosphere, or a combination of both these effects. In contrast, although not well documented in our record we hypothesize a gradual end of the AHP despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the Suguta Valley. The abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during October. Whether or not this is the case, the water-level record from the Suguta Valley demonstrates the importance of both orbitally-controlled insolation variations and short-term changes in solar irradiation as factors affecting the significant water level variations in East African rift lakes.}, language = {en} } @article{TrauthMaslinDeinoetal.2010, author = {Trauth, Martin H. and Maslin, Mark A. and Deino, Alan L. and Junginger, Annett and Lesoloyia, Moses and Odada, Eric O. and Olago, Daniel O. and Olaka, Lydia A. and Strecker, Manfred and Tiedemann, Ralph}, title = {Human evolution in a variable environment : the amplifier lakes of Eastern Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.07.007}, year = {2010}, abstract = {The development of rise Cenozoic East African Rift System (EARS) profoundly re-shaped the landscape and significantly increased the amplitude of short-term environmental response to climate variation. In particular, the development of amplifier lakes in rift basins after three million years ago significantly contributed to this exceptional sensitivity of East Africa to climate change compared to elsewhere on the African continent. Amplifier lakes are characterized by tectonically-formed graben morphologies in combination with an extreme contrast between high precipitation in the elevated parts of the catchment and high evaporation in the lake area. Such amplifier lakes respond rapidly to moderate, precessional-forced climate shifts, and as they do so apply dramatic environmental pressure to the biosphere. Rift basins, when either extremely dry or lake-filled, form important barriers for migration, mixing and competition of different populations of animals and hominins. Amplifier lakes link long-term, high-amplitude tectonic processes and short-term environmental fluctuations. East Africa may have become the place where early humans evolved as a consequence of this strong link between different time scales. (C) 2010 Elsevier Ltd. All rights reserved.}, language = {en} }