@article{ZuoShoaeeKemerinketal.2021, author = {Zuo, Guangzheng and Shoaee, Safa and Kemerink, Martijn and Neher, Dieter}, title = {General rules for the impact of energetic disorder and mobility on nongeminate recombination in phase-separated organic solar cells}, series = {Physical review applied}, volume = {16}, journal = {Physical review applied}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.16.034027}, pages = {19}, year = {2021}, abstract = {State-of-the-art organic solar cells exhibit power conversion efficiencies of 18\% and above. These devices benefit from the suppression of free charge recombination with regard to the Langevin limit of charge encounter in a homogeneous medium. It is recognized that the main cause of suppressed free charge recombination is the reformation and resplitting of charge-transfer (CT) states at the interface between donor and acceptor domains. Here, we use kinetic Monte Carlo simulations to understand the interplay between free charge motion and recombination in an energetically disordered phase-separated donor-acceptor blend. We identify conditions for encounter-dominated and resplitting-dominated recombination. In the former regime, recombination is proportional to mobility for all parameters tested and only slightly reduced with respect to the Langevin limit. In contrast, mobility is not the decisive parameter that determines the nongeminate recombination coefficient, k(2), in the latter case, where k2 is a sole function of the morphology, CT and charge-separated (CS) energetics, and CT-state decay properties. Our simulations also show that free charge encounter in the phase-separated disordered blend is determined by the average mobility of all carriers, while CT reformation and resplitting involves mostly states near the transport energy. Therefore, charge encounter is more affected by increased disorder than the resplitting of the CT state. As a consequence, for a given mobility, larger energetic disorder, in combination with a higher hopping rate, is preferred. These findings have implications for the understanding of suppressed recombination in solar cells with nonfullerene acceptors, which are known to exhibit lower energetic disorder than that of fullerenes.}, language = {en} } @article{PerdigonToroLeQuangPhuongZeiskeetal.2021, author = {Perdig{\´o}n-Toro, Lorena and Le Quang Phuong, and Zeiske, Stefan and Vandewal, Koen and Armin, Ardalan and Shoaee, Safa and Neher, Dieter}, title = {Excitons dominate the emission from PM6}, series = {ACS energy letters / American Chemical Society}, volume = {6}, journal = {ACS energy letters / American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.0c02572}, pages = {557 -- 564}, year = {2021}, abstract = {Non-fullerene acceptors (NFAs) are far more emissive than their fullerene-based counterparts. Here, we study the spectral properties of photocurrent generation and recombination of the blend of the donor polymer PM6 with the NFA Y6. We find that the radiative recombination of free charges is almost entirely due to the re-occupation and decay of Y6 singlet excitons, but that this pathway contributes less than 1\% to the total recombination. As such, the open-circuit voltage of the PM6:Y6 blend is determined by the energetics and kinetics of the charge-transfer (CT) state. Moreover, we find that no information on the energetics of the CT state manifold can be gained from the low-energy tail of the photovoltaic external quantum efficiency spectrum, which is dominated by the excitation spectrum of the Y6 exciton. We, finally, estimate the charge-separated state to lie only 120 meV below the Y6 singlet exciton energy, meaning that this blend indeed represents a high-efficiency system with a low energetic offset.}, language = {en} } @article{TaitReckwitzArvindetal.2021, author = {Tait, Claudia E. and Reckwitz, Anna and Arvind, Malavika and Neher, Dieter and Bittl, Robert and Behrends, Jan}, title = {Spin-spin interactions and spin delocalisation in a doped organic semiconductor probed by EPR spectroscopy}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {23}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp02133h}, pages = {13827 -- 13841}, year = {2021}, abstract = {The enhancement and control of the electrical conductivity of organic semiconductors is fundamental for their use in optoelectronic applications and can be achieved by molecular doping, which introduces additional charge carriers through electron transfer between a dopant molecule and the organic semiconductor. Here, we use Electron Paramagnetic Resonance (EPR) spectroscopy to characterise the unpaired spins associated with the charges generated by molecular doping of the prototypical organic semiconductor poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) and tris(pentafluorophenyl)borane (BCF). The EPR results reveal the P3HT radical cation as the only paramagnetic species in BCF-doped P3HT films and show evidence for increased mobility of the detected spins at high doping concentrations as well as formation of antiferromagnetically coupled spin pairs leading to decreased spin concentrations at low temperatures. The EPR signature for F(4)TCNQ-doped P3HT is found to be determined by spin exchange between P3HT radical cations and F(4)TCNQ radical anions. Results from continuous-wave and pulse EPR measurements suggest the presence of the unpaired spin on P3HT in a multitude of environments, ranging from free P3HT radical cations with similar properties to those observed in BCF-doped P3HT, to pairs of dipolar and exchange-coupled spins on P3HT and the dopant anion. Characterisation of the proton hyperfine interactions by ENDOR allowed quantification of the extent of spin delocalisation and revealed reduced delocalisation in the F(4)TCNQ-doped P3HT films.}, language = {en} } @article{PranavBenduhnNymanetal.2021, author = {Pranav, Manasi and Benduhn, Johannes and Nyman, Mathias and Hosseini, Seyed Mehrdad and Kublitski, Jonas and Shoaee, Safa and Neher, Dieter and Leo, Karl and Spoltore, Donato}, title = {Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c00049}, pages = {12603 -- 12609}, year = {2021}, abstract = {Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.}, language = {en} } @article{TokmoldinVollbrechtHosseinietal.2021, author = {Tokmoldin, Nurlan and Vollbrecht, Joachim and Hosseini, Seyed Mehrdad and Sun, Bowen and Perdig{\´o}n-Toro, Lorena and Woo, Han Young and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths}, series = {Advanced energy materials}, volume = {11}, journal = {Advanced energy materials}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6840}, doi = {10.1002/aenm.202100804}, pages = {9}, year = {2021}, abstract = {Organic solar cells (OSC) nowadays match their inorganic competitors in terms of current production but lag behind with regards to their open-circuit voltage loss and fill-factor, with state-of-the-art OSCs rarely displaying fill-factor of 80\% and above. The fill-factor of transport-limited solar cells, including organic photovoltaic devices, is affected by material and device-specific parameters, whose combination is represented in terms of the established figures of merit, such as theta and alpha. Herein, it is demonstrated that these figures of merit are closely related to the long-range carrier drift and diffusion lengths. Further, a simple approach is presented to devise these characteristic lengths using steady-state photoconductance measurements. This yields a straightforward way of determining theta and alpha in complete cells and under operating conditions. This approach is applied to a variety of photovoltaic devices-including the high efficiency nonfullerene acceptor blends-and show that the diffusion length of the free carriers provides a good correlation with the fill-factor. It is, finally, concluded that most state-of-the-art organic solar cells exhibit a sufficiently large drift length to guarantee efficient charge extraction at short circuit, but that they still suffer from too small diffusion lengths of photogenerated carriers limiting their fill factor.}, language = {en} }