@article{LeonCardonaParraetal.2018, author = {Leon, Santiago and Cardona, Agustin and Parra, Mauricio and Sobel, Edward and Jaramillo, Juan S. and Glodny, Johannes and Valencia, Victor A. and Chew, David and Montes, Camilo and Posada, Gustavo and Monsalve, Gaspar and Pardo-Trujillo, Andres}, title = {Transition from collisional to subduction-related regimes}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004785}, pages = {119 -- 139}, year = {2018}, abstract = {A geological transect across the suture separating northwestern South America from the Panama Arc helps document the provenance and thermal history of both crustal domains and the suture zone. During middle Miocene, strata were being accumulated over the suture zone between the Panama Arc and the continental margin. Integrated provenance analyses of those middle Miocene strata show the presence of mixed sources that includes material derived from the two major crustal domains: the old northwestern South American orogens and the younger Panama Arc. Coeval moderately rapid exhumation of Upper Cretaceous to Paleogene sediments forming the reference continental margin is suggested from our inverse thermal modeling. Strata within the suture zone are intruded by similar to 12 Ma magmatic arc-related plutons, marking the transition from a collisional orogen to a subduction-related one. Renewed late Miocene to Pliocene acceleration of the exhumation rates is the consequence of a second tectonic pulse, which is likely to be triggered by the onset of a flat-slab subduction of the Nazca plate underneath the northernmost Andes of Colombia, suggesting that late Miocene to Pliocene orogeny in the Northern Andes is controlled by at least two different tectonic mechanisms.}, language = {en} } @article{GomezGarciaMeessenScheckWenderothetal.2019, author = {Gomez-Garcia, Angela Maria and Meeßen, Christian and Scheck-Wenderoth, Magdalena and Monsalve, Gaspar and Bott, Judith and Bernhardt, Anne and Bernal, Gladys}, title = {3-D Modeling of Vertical Gravity Gradients and the Delimitation of Tectonic Boundaries: The Caribbean Oceanic Domain as a Case Study}, series = {Geochemistry, geophysics, geosystems}, volume = {20}, journal = {Geochemistry, geophysics, geosystems}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2019GC008340}, pages = {5371 -- 5393}, year = {2019}, abstract = {Geophysical data acquisition in oceanic domains is challenging, implying measurements with low and/or nonhomogeneous spatial resolution. The evolution of satellite gravimetry and altimetry techniques allows testing 3-D density models of the lithosphere, taking advantage of the high spatial resolution and homogeneous coverage of satellites. However, it is not trivial to discretise the source of the gravity field at different depths. Here, we propose a new method for inferring tectonic boundaries at the crustal level. As a novelty, instead of modeling the gravity anomalies and assuming a flat Earth approximation, we model the vertical gravity gradients (VGG) in spherical coordinates, which are especially sensitive to density contrasts in the upper layers of the Earth. To validate the methodology, the complex oceanic domain of the Caribbean region is studied, which includes different crustal domains with a tectonic history since Late Jurassic time. After defining a lithospheric starting model constrained by up-to-date geophysical data sets, we tested several a-priory density distributions and selected the model with the minimum misfits with respect to the VGG calculated from the EIGEN-6C4 data set. Additionally, the density of the crystalline crust was inferred by inverting the VGG field. Our methodology enabled us not only to refine, confirm, and/or propose tectonic boundaries in the study area but also to identify a new anomalous buoyant body, located in the South Lesser Antilles subduction zone, and high-density bodies along the Greater, Lesser, and Leeward Antilles forearcs.}, language = {en} }