@article{SchneiderWetterichSchirrmeisteretal.2016, author = {Schneider, Andrea and Wetterich, Sebastian and Schirrmeister, Lutz and Herzschuh, Ulrike and Meyer, Hanno and Pestryakova, Luidmila Agafyevna}, title = {Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Society of Exploration Geophysicists}, address = {Abingdon}, issn = {0800-0395}, doi = {10.3402/polar.v35.25225}, pages = {22}, year = {2016}, abstract = {Freshwater ostracods (Crustacea, Ostracoda) are valuable biological indicators. In Arctic environments, their habitat conditions are barely known and the abundance and diversity of ostracods is documented only in scattered records with incomplete ecological characterization. To determine the taxonomic range of ostracod assemblages and their habitat conditions in polygon ponds in the Indigirka Lowland, north-east Siberia, we collected more than 100 living ostracod individuals per site with a plankton net (mesh size 65 mm) and an exhaustor system from 27 water bodies and studied them in the context of substrate and hydrochemical data. During the summer of 2011, a single pond site and its ostracod population was selected for special study. This first record of the ostracod fauna in the Indigirka Lowland comprises eight species and three additional taxa. Fabaeformiscandona krochini and F. groenlandica were documented for the first time in continental Siberia. Repeated sampling of a low-centre polygon pond yielded insights into the population dynamics of F. pedata. We identified air temperature and precipitation as the main external drivers of water temperatures, water levels, ion concentrations and water stable isotope composition on diurnal and seasonal scales.}, language = {en} } @article{WetterichRudayaKuznetsovetal.2019, author = {Wetterich, Sebastian and Rudaya, Natalia and Kuznetsov, Vladislav and Maksimov, Fedor and Opel, Thomas and Meyer, Hanno and G{\"u}nther, Frank and Bobrov, Anatoly and Raschke, Elena and Zimmermann, Heike Hildegard and Strauss, Jens and Starikova, Anna and Fuchs, Margret and Schirrmeister, Lutz}, title = {Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka}, series = {Quaternary research : an interdisciplinary journal}, volume = {92}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2019.6}, pages = {530 -- 548}, year = {2019}, abstract = {Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a-c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial-Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka.}, language = {en} } @article{SchirrmeisterMeyerAndreevetal.2016, author = {Schirrmeister, Lutz and Meyer, Hanno and Andreev, Andrei and Wetterich, Sebastian and Kienast, Frank and Bobrov, Anatoly and Fuchs, Margret and Sierralta, Melanie and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.009}, pages = {259 -- 278}, year = {2016}, abstract = {Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS C-14], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [Th-230/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea, Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{OpelMurtonWetterichetal.2019, author = {Opel, Thomas and Murton, Julian B. and Wetterich, Sebastian and Meyer, Hanno and Ashastina, Kseniia and G{\"u}nther, Frank and Grotheer, Hendrik and Mollenhauer, Gesine and Danilov, Petr P. and Boeskorov, Vasily and Savvinov, Grigoriy N. and Schirrmeister, Lutz}, title = {Past climate and continentality inferred from ice wedges at Batagay Highlands, interior Yakutia}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-15-1443-2019}, pages = {1443 -- 1461}, year = {2019}, abstract = {Ice wedges in the Yana Highlands of interior Yakutia - the most continental region of the Northern Hemisphere - were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean delta O-18 about -35 parts per thousand) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean delta O-18 about -29 parts per thousand) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex mean delta O-18 about -33 parts per thousand) and of the MIS 3-2 upper sand unit (mean delta O-18 from about -33 parts per thousand to -30 parts per thousand) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation.}, language = {en} }