@article{WolffKristenJennySchettleretal.2014, author = {Wolff, Christian Michael and Kristen-Jenny, Iris and Schettler, Georg and Plessen, Birgit and Meyer, Hanno and Dulski, Peter and Naumann, Rudolf and Brauer, Achim and Verschuren, Dirk and Haug, Gerald H.}, title = {Modern seasonality in Lake Challa (Kenya/Tanzania) and its sedimentary documentation in recent lake sediments}, series = {Limnology and oceanography}, volume = {59}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2014.59.5.1621}, pages = {1621 -- 1636}, year = {2014}, abstract = {From November 2006 to January 2010, a sediment trap that was cleared monthly was deployed in Lake Challa, a deep stratified freshwater lake on the eastern slope of Mt. Kilimanjaro in southern Kenya. Geochemical data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to characterize the effect of single parameters on productivity and sedimentation processes in the crater basin. During the southern hemisphere summer (November-March), when the water temperature is high and the lake is biologically productive (nondiatom algae), calcite predominated in the sediment trap samples. During the "long rain" season (March-May) a small amount of organic matter and lithogenic material caused by rainfall appeared. This was followed by the cool and windy months of the southern hemisphere winter (June-October) when diatoms were the main component, indicating a diatom bloom initiated by improvement of nutrient availability related to upwelling processes. The sediment trap data support the hypothesis that the light-dark lamination couplets, which are abundant in Lake Challa cores, reflect seasonal delivery to the sediments of diatom-rich particulates during the windy months and diatom-poor material during the wet season. However, interannual and spatial variability in upwelling and productivity patterns, as well as El Nino-Southern Oscillation (ENSO)-related rainfall and drought cycles, exert a strong influence on the magnitude and geochemical composition of particle export to the hypolimnion of Lake Challa.}, language = {en} } @article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{WetterichRudayaKuznetsovetal.2019, author = {Wetterich, Sebastian and Rudaya, Natalia and Kuznetsov, Vladislav and Maksimov, Fedor and Opel, Thomas and Meyer, Hanno and G{\"u}nther, Frank and Bobrov, Anatoly and Raschke, Elena and Zimmermann, Heike Hildegard and Strauss, Jens and Starikova, Anna and Fuchs, Margret and Schirrmeister, Lutz}, title = {Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka}, series = {Quaternary research : an interdisciplinary journal}, volume = {92}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2019.6}, pages = {530 -- 548}, year = {2019}, abstract = {Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a-c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial-Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka.}, language = {en} } @article{SchneiderWetterichSchirrmeisteretal.2016, author = {Schneider, Andrea and Wetterich, Sebastian and Schirrmeister, Lutz and Herzschuh, Ulrike and Meyer, Hanno and Pestryakova, Luidmila Agafyevna}, title = {Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Society of Exploration Geophysicists}, address = {Abingdon}, issn = {0800-0395}, doi = {10.3402/polar.v35.25225}, pages = {22}, year = {2016}, abstract = {Freshwater ostracods (Crustacea, Ostracoda) are valuable biological indicators. In Arctic environments, their habitat conditions are barely known and the abundance and diversity of ostracods is documented only in scattered records with incomplete ecological characterization. To determine the taxonomic range of ostracod assemblages and their habitat conditions in polygon ponds in the Indigirka Lowland, north-east Siberia, we collected more than 100 living ostracod individuals per site with a plankton net (mesh size 65 mm) and an exhaustor system from 27 water bodies and studied them in the context of substrate and hydrochemical data. During the summer of 2011, a single pond site and its ostracod population was selected for special study. This first record of the ostracod fauna in the Indigirka Lowland comprises eight species and three additional taxa. Fabaeformiscandona krochini and F. groenlandica were documented for the first time in continental Siberia. Repeated sampling of a low-centre polygon pond yielded insights into the population dynamics of F. pedata. We identified air temperature and precipitation as the main external drivers of water temperatures, water levels, ion concentrations and water stable isotope composition on diurnal and seasonal scales.}, language = {en} } @article{SchirrmeisterMeyerAndreevetal.2016, author = {Schirrmeister, Lutz and Meyer, Hanno and Andreev, Andrei and Wetterich, Sebastian and Kienast, Frank and Bobrov, Anatoly and Fuchs, Margret and Sierralta, Melanie and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.009}, pages = {259 -- 278}, year = {2016}, abstract = {Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS C-14], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [Th-230/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea, Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ParisiPaternosterKohfahletal.2011, author = {Parisi, Serena and Paternoster, Michele and Kohfahl, Claus and Pekdeger, Asaf and Meyer, Hanno and Hubberten, Hans-Wolfgang and Spilotro, Giuseppe and Mongelli, Giovanni}, title = {Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data mount Vulture, southern Italy}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {19}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1431-2174}, doi = {10.1007/s10040-010-0619-8}, pages = {133 -- 153}, year = {2011}, abstract = {Environmental isotope techniques, hydrogeochemical analysis and hydraulic data are employed to identify the main recharge areas of the Mt. Vulture hydrogeological basin, one of the most important aquifers of southern Italy. The groundwaters are derived from seepage of rainwater, flowing from the highest to the lowest elevations through the shallow volcanic weathered host-rock fracture zones. Samples of shallow and deep groundwater were collected at 48 locations with elevations ranging from 352 to 1,100 m above sea level (a.s.l.), for stable isotope (delta(18)O, delta D) and major ion analyses. A complete dataset of available hydraulic information has been integrated with measurements carried out in the present study. Inferred recharge elevations, estimated on the basis of the local vertical isotopic gradient of delta(18)O, range between 550 and 1,200 m a.s.l. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different recharge sources. Knowledge of the local hydrogeological setting was the starting point for a detailed hydrogeochemical and isotopic study to define the recharge and discharge patterns identifying the groundwater flow pathways of the Mt. Vulture basin. The integration of all the data allowed for the tracing of the groundwater flows of the Mt. Vulture basin.}, language = {en} } @article{OpelMurtonWetterichetal.2019, author = {Opel, Thomas and Murton, Julian B. and Wetterich, Sebastian and Meyer, Hanno and Ashastina, Kseniia and G{\"u}nther, Frank and Grotheer, Hendrik and Mollenhauer, Gesine and Danilov, Petr P. and Boeskorov, Vasily and Savvinov, Grigoriy N. and Schirrmeister, Lutz}, title = {Past climate and continentality inferred from ice wedges at Batagay Highlands, interior Yakutia}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-15-1443-2019}, pages = {1443 -- 1461}, year = {2019}, abstract = {Ice wedges in the Yana Highlands of interior Yakutia - the most continental region of the Northern Hemisphere - were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean delta O-18 about -35 parts per thousand) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean delta O-18 about -29 parts per thousand) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex mean delta O-18 about -33 parts per thousand) and of the MIS 3-2 upper sand unit (mean delta O-18 from about -33 parts per thousand to -30 parts per thousand) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation.}, language = {en} } @article{NguyenLeDuyNguyenVietDuHeidbuecheletal.2019, author = {Nguyen Le Duy, and Nguyen Viet Du, and Heidb{\"u}chel, Ingo and Meyer, Hanno and Weiler, Markus and Merz, Bruno and Apel, Heiko}, title = {Identification of groundwater mean transit times of precipitation and riverbank infiltration by two-component lumped parameter models}, series = {Hydrological processes}, volume = {33}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13549}, pages = {3098 -- 3118}, year = {2019}, abstract = {Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (delta O-18 and delta H-2), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two-component lumped parameter models (LPMs) that are solved using delta O-18 records. The study illustrates that two-component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low-permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface-groundwater interaction can be conceptualized by exploiting two-component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.}, language = {en} } @misc{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {500}, issn = {1866-8372}, doi = {10.25932/publishup-40838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408385}, pages = {17}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} } @article{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-12-1565-2016}, pages = {1565 -- 1581}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} }