@article{ChechkinSenoMetzleretal.2017, author = {Chechkin, Aleksei V. and Seno, Flavio and Metzler, Ralf and Sokolov, Igor M.}, title = {Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities}, series = {Physical review : X, Expanding access}, volume = {7}, journal = {Physical review : X, Expanding access}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.7.021002}, pages = {20}, year = {2017}, abstract = {A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @article{SandevSokolovMetzleretal.2017, author = {Sandev, Trifce and Sokolov, Igor M. and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Beyond monofractional kinetics}, series = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, volume = {102}, journal = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0779}, doi = {10.1016/j.chaos.2017.05.001}, pages = {210 -- 217}, year = {2017}, abstract = {We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{GhoshCherstvyPetrovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Petrov, Eugene P. and Metzler, Ralf}, title = {Interactions of rod-like particles on responsive elastic sheets}, series = {Soft matter}, journal = {Soft matter}, publisher = {RSC}, address = {London}, issn = {1744-6848}, doi = {10.1039/C6SM01522K}, year = {2016}, abstract = {What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.}, language = {en} } @article{CherstvyMetzler2016, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {18}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C6CP03101C}, pages = {23840 -- 23852}, year = {2016}, abstract = {We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2016, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces}, series = {New journal of physics : the open-access journal for physics}, volume = {18}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ.}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/8/083037}, year = {2016}, abstract = {We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-H{\"u}ckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-H{\"u}ckel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems.}, language = {en} } @article{JeonJavanainenMartinezSearaetal.2016, author = {Jeon, Jae-Hyung and Javanainen, Matti and Martinez-Seara, Hector and Metzler, Ralf and Vattulainen, Ilpo}, title = {Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins}, series = {Physical review : X, Expanding access}, volume = {6}, journal = {Physical review : X, Expanding access}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.6.021006}, pages = {17}, year = {2016}, abstract = {Biomembranes are exceptionally crowded with proteins with typical protein-to-lipid ratios being around 1:50 - 1:100. Protein crowding has a decisive role in lateral membrane dynamics as shown by recent experimental and computational studies that have reported anomalous lateral diffusion of phospholipids and membrane proteins in crowded lipid membranes. Based on extensive simulations and stochastic modeling of the simulated trajectories, we here investigate in detail how increasing crowding by membrane proteins reshapes the stochastic characteristics of the anomalous lateral diffusion in lipid membranes. We observe that correlated Gaussian processes of the fractional Langevin equation type, identified as the stochastic mechanism behind lipid motion in noncrowded bilayer, no longer adequately describe the lipid and protein motion in crowded but otherwise identical membranes. It turns out that protein crowding gives rise to a multifractal, non-Gaussian, and spatiotemporally heterogeneous anomalous lateral diffusion on time scales from nanoseconds to, at least, tens of microseconds. Our investigation strongly suggests that the macromolecular complexity and spatiotemporal membrane heterogeneity in cellular membranes play critical roles in determining the stochastic nature of the lateral diffusion and, consequently, the associated dynamic phenomena within membranes. Clarifying the exact stochastic mechanism for various kinds of biological membranes is an important step towards a quantitative understanding of numerous intramembrane dynamic phenomena.}, language = {en} } @article{GodecMetzler2016, author = {Godec, Aljaz and Metzler, Ralf}, title = {First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep20349}, pages = {11}, year = {2016}, abstract = {The first passage is a generic concept for quantifying when a random quantity such as the position of a diffusing molecule or the value of a stock crosses a preset threshold (target) for the first time. The last decade saw an enlightening series of new results focusing mostly on the so-called mean and global first passage time (MFPT and GFPT, respectively) of such processes. Here we push the understanding of first passage processes one step further. For a simple heterogeneous system we derive rigorously the complete distribution of first passage times (FPTs). Our results demonstrate that the typical FPT significantly differs from the MFPT, which corresponds to the long time behaviour of the FPT distribution. Conversely, the short time behaviour is shown to correspond to trajectories connecting directly from the initial value to the target. Remarkably, we reveal a previously overlooked third characteristic time scale of the first passage dynamics mirroring brief excursion away from the target.}, language = {en} } @article{GhoshCherstvyPetrovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Petrov, Eugene P. and Metzler, Ralf}, title = {Interactions of rod-like particles on responsive elastic sheets}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm01522k}, pages = {7908 -- 7919}, year = {2016}, abstract = {What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2016, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear Poisson-Boltzmann approach}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/8/083037}, pages = {17}, year = {2016}, abstract = {We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces-are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-Huckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-Huckel result, such that the required critical surface charge density for polyelectrolyte adsorption sigma(c) increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems.}, language = {en} } @article{SchwarzlGodecOshaninetal.2016, author = {Schwarzl, Maria and Godec, Aljaz and Oshanin, Gleb and Metzler, Ralf}, title = {A single predator charging a herd of prey: effects of self volume and predator-prey decision-making}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {49}, journal = {Journal of physics : A, Mathematical and theoretical}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/49/22/225601}, pages = {19}, year = {2016}, abstract = {We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein-Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant.}, language = {en} } @article{GodecMetzler2016, author = {Godec, Aljaz and Metzler, Ralf}, title = {Universal Proximity Effect in Target Search Kinetics in the Few-Encounter Limit}, series = {Physical review : X, Expanding access}, volume = {6}, journal = {Physical review : X, Expanding access}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.6.041037}, pages = {11}, year = {2016}, abstract = {When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here, we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first-passage times. Conversely, statistically dominant indirect paths exploring the entire system tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive stochastic processes, for which few binding events often determine the regulatory outcome. The proximity effect is independent of details of the transport, highlighting the robust character of the FPT features uncovered here.}, language = {en} } @article{KruesemannSchwarzlMetzler2016, author = {Kruesemann, Henning and Schwarzl, Richard and Metzler, Ralf}, title = {Ageing Scher-Montroll Transport}, series = {Transport in Porous Media}, volume = {115}, journal = {Transport in Porous Media}, publisher = {Springer}, address = {New York}, issn = {0169-3913}, doi = {10.1007/s11242-016-0686-y}, pages = {327 -- 344}, year = {2016}, abstract = {We study the properties of ageing Scher-Montroll transport in terms of a biased subdiffusive continuous time random walk in which the waiting times between consecutive jumps of the charge carriers are distributed according to the power law probability with . As we show, the dynamical properties of the Scher-Montroll transport depend on the ageing time span between the initial preparation of the system and the start of the observation. The Scher-Montroll transport theory was originally shown to describe the photocurrent in amorphous solids in the presence of an external electric field, but it has since been used in many other fields of physical sciences, in particular also in the geophysical context for the description of the transport of tracer particles in subsurface aquifers. In the absence of ageing () the photocurrent of the classical Scher-Montroll model or the breakthrough curves in the groundwater context exhibit a crossover between two power law regimes in time with the scaling exponents and . In the presence of ageing a new power law regime and an initial plateau regime of the current emerge. We derive the different power law regimes and crossover times of the ageing Scher-Montroll transport and show excellent agreement with simulations of the process. Experimental data of ageing Scher-Montroll transport in polymeric semiconductors are shown to agree well with the predictions of our theory.}, language = {en} } @article{CherstvyMetzler2016, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {18}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp03101c}, pages = {23840 -- 23852}, year = {2016}, abstract = {We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.}, language = {en} } @article{GodecMetzler2016, author = {Godec, Aljaz and Metzler, Ralf}, title = {Active transport improves the precision of linear long distance molecular signalling}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {49}, journal = {Journal of physics : A, Mathematical and theoretical}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/49/36/364001}, pages = {11}, year = {2016}, abstract = {Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.}, language = {en} } @article{PalyulinChechkinKlagesetal.2016, author = {Palyulin, Vladimir V. and Chechkin, Aleksei V. and Klages, Rainer and Metzler, Ralf}, title = {Search reliability and search efficiency of combined Levy-Brownian motion: long relocations mingled with thorough local exploration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {49}, journal = {Journal of physics : A, Mathematical and theoretical}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/49/39/394002}, pages = {2189 -- 2193}, year = {2016}, abstract = {A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economically of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent alpha < 1, by itself implying zero probability of hitting a point on a line, leads to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent a of the Levy flight component.}, language = {en} } @article{GhoshCherstvyGrebenkovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Grebenkov, Denis S. and Metzler, Ralf}, title = {Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/1/013027}, pages = {16}, year = {2016}, abstract = {A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep30520}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep30520}, pages = {16}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @article{SandevIominKantzetal.2016, author = {Sandev, Trifce and Iomin, Alexander and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Comb Model with Slow and Ultraslow Diffusion}, series = {Mathematical modelling of natural phenomena}, volume = {11}, journal = {Mathematical modelling of natural phenomena}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0973-5348}, doi = {10.1051/mmnp/201611302}, pages = {18 -- 33}, year = {2016}, abstract = {We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process.}, language = {en} } @article{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {10072}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep10072}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @article{CherstvyMetzler2015, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity}, series = {Journal of statistical mechanics: theory and experiment}, journal = {Journal of statistical mechanics: theory and experiment}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/2015/05/P05010}, pages = {20}, year = {2015}, abstract = {We study generalized anomalous diffusion processes whose diffusion coefficient D(x, t) similar to D-0x(alpha)t(beta) depends on both the position x of the test particle and the process time t. This process thus combines the features of scaled Brownian motion and heterogeneous diffusion parent processes. We compute the ensemble and time averaged mean squared displacements of this generalized diffusion process. The scaling exponent of the ensemble averaged mean squared displacement is shown to be the product of the critical exponents of the parent processes, and describes both subdiffusive and superdiffusive systems. We quantify the amplitude fluctuations of the time averaged mean squared displacement as function of the length of the time series and the lag time. In particular, we observe a weak ergodicity breaking of this generalized diffusion process: even in the long time limit the ensemble and time averaged mean squared displacements are strictly disparate. When we start to observe this process some time after its initiation we observe distinct features of ageing. We derive a universal ageing factor for the time averaged mean squared displacement containing all information on the ageing time and the measurement time. External confinement is shown to alter the magnitudes and statistics of the ensemble and time averaged mean squared displacements.}, language = {en} } @article{CherstvyMetzler2015, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {14}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4917077}, pages = {11}, year = {2015}, abstract = {We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form D(x) similar to D-0 vertical bar x vertical bar (alpha 0) in the presence of annealed and quenched disorder of the environment, corresponding to an effective variation of the exponent a in time and space. In the case of annealed disorder, for which effectively alpha(0) = alpha(0)(t), we show how the long time scaling of the ensemble mean squared displacement (MSD) and the amplitude variation of individual realizations of the time averaged MSD are affected by the disorder strength. For the case of quenched disorder, the long time behavior becomes effectively Brownian after a number of jumps between the domains of a stratified medium. In the latter situation, the averages are taken over both an ensemble of particles and different realizations of the disorder. As physical observables, we analyze in detail the ensemble and time averaged MSDs, the ergodicity breaking parameter, and higher order moments of the time averages. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{BlavatskaMetzler2015, author = {Blavatska, Viktoria and Metzler, Ralf}, title = {Conformational properties of complex polymers: rosette versus star-like structures}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {13}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/13/135001}, pages = {14}, year = {2015}, abstract = {Multiple loop formation in polymer macromolecules is an important feature of the chromatin organization and DNA compactification in the nuclei. We analyse the size and shape characteristics of complex polymer structures, containing in general f(1) loops (petals) and f(2) linear chains (branches). Within the frames of continuous model of Gaussian macromolecule, we apply the path integration method and obtain the estimates for gyration radius R-g and asphericity (A) over cap of typical conformation as functions of parameters f(1), f(2). In particular, our results qualitatively reveal the extent of anisotropy of star-like topologies as compared to the rosette structures of the same total molecular weight.}, language = {en} } @article{RevereyJeonBaoetal.2015, author = {Reverey, Julia F. and Jeon, Jae-Hyung and Bao, Han and Leippe, Matthias and Metzler, Ralf and Selhuber-Unkel, Christine}, title = {Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep11690}, pages = {14}, year = {2015}, abstract = {Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/6/063038}, pages = {16}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form D(t) similar or equal to 1/t. For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @article{GodecMetzler2015, author = {Godec, Aljaz and Metzler, Ralf}, title = {Optimization and universality of Brownian search in a basic model of quenched heterogeneous media}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {91}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.91.052134}, pages = {17}, year = {2015}, abstract = {The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time ( MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.}, language = {en} } @article{ShinCherstvyKimetal.2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Kim, Won Kyu and Metzler, Ralf}, title = {Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/11/113008}, pages = {12}, year = {2015}, abstract = {We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells.}, language = {en} } @article{KruesemannGodecMetzler2015, author = {Kr{\"u}semann, Henning and Godec, Aljaz and Metzler, Ralf}, title = {Ageing first passage time density in continuous time random walks and quenched energy landscapes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {28}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/28/285001}, pages = {20}, year = {2015}, abstract = {We study the first passage dynamics of an ageing stochastic process in the continuous time random walk (CTRW) framework. In such CTRW processes the test particle performs a random walk, in which successive steps are separated by random waiting times distributed in terms of the waiting time probability density function Psi (t) similar or equal to t(-1-alpha) (0 <= alpha <= 2). An ageing stochastic process is defined by the explicit dependence of its dynamic quantities on the ageing time t(a), the time elapsed between its preparation and the start of the observation. Subdiffusive ageing CTRWs with 0 < alpha < 1 describe systems such as charge carriers in amorphous semiconducters, tracer dispersion in geological and biological systems, or the dynamics of blinking quantum dots. We derive the exact forms of the first passage time density for an ageing subdiffusive CTRW in the semi-infinite, confined, and biased case, finding different scaling regimes for weakly, intermediately, and strongly aged systems: these regimes, with different scaling laws, are also found when the scaling exponent is in the range 1 < alpha < 2, for sufficiently long ta. We compare our results with the ageing motion of a test particle in a quenched energy landscape. We test our theoretical results in the quenched landscape against simulations: only when the bias is strong enough, the correlations from returning to previously visited sites become insignificant and the results approach the ageing CTRW results. With small bias or without bias, the ageing effects disappear and a change in the exponent compared to the case of a completely annealed landscape can be found, reflecting the build-up of correlations in the quenched landscape.}, language = {en} } @article{BauerRasmussenLomholtetal.2015, author = {Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A. and Metzler, Ralf}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep10072}, pages = {13}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @article{PulkkinenMetzler2015, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep17820}, pages = {11}, year = {2015}, abstract = {Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E. coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.}, language = {en} } @article{MetzlerCherstvyChechkinetal.2015, author = {Metzler, Ralf and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna S.}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, number = {063038}, publisher = {Dt. Physikalische Ges., IOP}, address = {Bad Honnef, London}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/6/063038}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @article{MardoukhiJeonMetzler2015, author = {Mardoukhi, Yousof and Jeon, Jae-Hyung and Metzler, Ralf}, title = {Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {44}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03548a}, pages = {30134 -- 30147}, year = {2015}, abstract = {We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law similar to T-h with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, series = {Soft matter}, volume = {11}, journal = {Soft matter}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c4sm02007c}, pages = {472 -- 488}, year = {2015}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @article{GhoshCherstvyMetzler2015, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Non-universal tracer diffusion in crowded media of non-inert obstacles}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp03599b}, pages = {1847 -- 1858}, year = {2015}, abstract = {We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Polymer looping is controlled by macromolecular crowding, spatial confinement, and chain stiffness}, series = {ACS Macro Letters}, volume = {4}, journal = {ACS Macro Letters}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-1653}, doi = {10.1021/mz500709w}, pages = {202 -- 206}, year = {2015}, abstract = {We study by extensive computer simulations the looping characteristics of linear polymers with varying persistence length inside a spherical cavity in the presence of macromolecular crowding. For stiff chains, the looping probability and looping time reveal wildly oscillating patterns as functions of the chain length. The effects of crowding differ dramatically for flexible versus stiff polymers. While for flexible chains the looping kinetics is slowed down by the crowders, for stiffer chains the kinetics turns out to be either decreased or facilitated, depending on the polymer length. For severe confinement, the looping kinetics may become strongly facilitated by crowding. Our findings are of broad impact for DNA looping in the crowded and compartmentalized interior of living biological cells.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2015, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Inverted critical adsorption of polyelectrolytes in confinement}, series = {Soft matter}, volume = {11}, journal = {Soft matter}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c5sm00635j}, pages = {4430 -- 4443}, year = {2015}, abstract = {What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sigma(c)-defining the adsorption-desorption transition-are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sigma(c) for the concave interfaces versus the Debye screening length 1/kappa and the extent of confinement a for these three interfaces for small kappa a values. For large kappa a the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/kappa. We also rationalize how sigma(c)(kappa) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption-the effect often hard to tackle theoretically-putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Quantifying non-ergodic dynamics of force-free granular gases}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {34}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02824h}, pages = {21791 -- 21798}, year = {2015}, abstract = {Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient epsilon. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of epsilon on the impact velocity of particles.}, language = {en} } @article{PulkkinenMetzler2015, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation}, series = {Scientific reports}, journal = {Scientific reports}, number = {5}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep17820}, year = {2015}, abstract = {Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.}, language = {en} } @article{SafdariCherstvyChechkinetal.2015, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Thiel, Felix and Sokolov, Igor M. and Metzler, Ralf}, title = {Quantifying the non-ergodicity of scaled Brownian motion}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {37}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/37/375002}, pages = {18}, year = {2015}, abstract = {We examine the non-ergodic properties of scaled Brownian motion (SBM), a non-stationary stochastic process with a time dependent diffusivity of the form D(t) similar or equal to t(alpha-1). We compute the ergodicity breaking parameter EB in the entire range of scaling exponents a, both analytically and via extensive computer simulations of the stochastic Langevin equation. We demonstrate that in the limit of long trajectory lengths T and short lag times Delta the EB parameter as function of the scaling exponent a has no divergence at alpha - 1/2 and present the asymptotes for EB in different limits. We generalize the analytical and simulations results for the time averaged and ergodic properties of SBM in the presence of ageing, that is, when the observation of the system starts only a finite time span after its initiation. The approach developed here for the calculation of the higher time averaged moments of the particle displacement can be applied to derive the ergodic properties of other stochastic processes such as fractional Brownian motion.}, language = {en} } @article{SafdariChechkinJafarietal.2015, author = {Safdari, Hadiseh and Chechkin, Aleksei V. and Jafari, Gholamreza R. and Metzler, Ralf}, title = {Aging scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {91}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.91.042107}, pages = {9}, year = {2015}, abstract = {Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.}, language = {en} } @article{SandevChechkinKorabeletal.2015, author = {Sandev, Trifce and Chechkin, Aleksei V. and Korabel, Nickolay and Kantz, Holger and Sokolov, Igor M. and Metzler, Ralf}, title = {Distributed-order diffusion equations and multifractality: Models and solutions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {92}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.92.042117}, pages = {19}, year = {2015}, abstract = {We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.}, language = {en} } @article{SandevChechkinKantzetal.2015, author = {Sandev, Trifce and Chechkin, Aleksei V. and Kantz, Holger and Metzler, Ralf}, title = {Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {18}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {1311-0454}, doi = {10.1515/fca-2015-0059}, pages = {1006 -- 1038}, year = {2015}, abstract = {We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Self-subdiffusion in solutions of star-shaped crowders: non-monotonic effects of inter-particle interactions}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/11/113028}, pages = {12}, year = {2015}, abstract = {We examine by extensive computer simulations the self-diffusion of anisotropic star-like particles in crowded two-dimensional solutions. We investigate the implications of the area coverage fraction phi of the crowders and the crowder-crowder adhesion properties on the regime of transient anomalous diffusion. We systematically compute the mean squared displacement (MSD) of the particles, their time averaged MSD, and the effective diffusion coefficient. The diffusion is ergodic in the limit of long traces, such that the mean time averaged MSD converges towards the ensemble averaged MSD, and features a small residual amplitude spread of the time averaged MSD from individual trajectories. At intermediate time scales, we quantify the anomalous diffusion in the system. Also, we show that the translational-but not rotational-diffusivity of the particles Dis a nonmonotonic function of the attraction strength between them. Both diffusion coefficients decrease as the power law D(phi) similar to (1 - phi/phi*)(2 ... 2.4) with the area fraction phi occupied by the crowders and the critical value phi*. Our results might be applicable to rationalising the experimental observations of non-Brownian diffusion for a number of standard macromolecular crowders used in vitro to mimic the cytoplasmic conditions of living cells.}, language = {en} } @article{PalyulinAlaNissilaMetzler2014, author = {Palyulin, Vladimir V. and Ala-Nissila, Tapio and Metzler, Ralf}, title = {Polymer translocation: the first two decades and the recent diversification}, series = {Soft matter}, volume = {45}, journal = {Soft matter}, number = {10}, editor = {Metzler, Ralf}, publisher = {the Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76266}, pages = {9016 -- 9037}, year = {2014}, abstract = {Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.}, language = {en} } @article{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, series = {Physical chemistry, chemical physics : PCCP}, volume = {30}, journal = {Physical chemistry, chemical physics : PCCP}, number = {16}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, doi = {10.1039/C4CP02019G}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} } @article{GodecBauerMetzler2014, author = {Godec, Aljaz and Bauer, Maximilian and Metzler, Ralf}, title = {Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/9/092002}, pages = {13}, year = {2014}, abstract = {Based on extensive Brownian dynamics simulations we study the thermal motion of a tracer bead in a cross-linked, flexible gel in the limit when the tracer particle size is comparable to or even larger than the equilibrium mesh size of the gel. The analysis of long individual trajectories of the tracer demonstrates the existence of pronounced transient anomalous diffusion. From the time averaged mean squared displacement and the time averaged van Hove correlation functions we elucidate the many-body origin of the non-Brownian tracer bead dynamics. Our results shed new light onto the ongoing debate over the physical origin of steric tracer interactions with structured environments.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2014, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto charged Janus nanospheres}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp02207f}, pages = {15539 -- 15550}, year = {2014}, abstract = {Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.}, language = {en} } @article{PalyulinChechkinMetzler2014, author = {Palyulin, Vladimir V. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Space-fractional Fokker-Planck equation and optimization of random search processes in the presence of an external bias}, series = {Journal of statistical mechanics: theory and experiment}, journal = {Journal of statistical mechanics: theory and experiment}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/2014/11/P11031}, pages = {32}, year = {2014}, abstract = {Based on the space-fractional Fokker-Planck equation with a delta-sink term, we study the efficiency of random search processes based on Levy flights with power-law distributed jump lengths in the presence of an external drift, for instance, an underwater current, an airflow, or simply the preference of the searcher based on prior experience. While Levy flights turn out to be efficient search processes when the target is upstream relative to the starting point, in the downstream scenario, regular Brownian motion turns out to be advantageous. This is caused by the occurrence of leapovers of Levy flights, due to which Levy flights typically overshoot a point or small interval. Studying the solution of the fractional Fokker-Planck equation, we establish criteria when the combination of the external stream and the initial distance between the starting point and the target favours Levy flights over the regular Brownian search. Contrary to the common belief that Levy flights with a Levy index alpha = 1 (i.e. Cauchy flights) are optimal for sparse targets, we find that the optimal value for alpha may range in the entire interval (1, 2) and explicitly include Brownian motion as the most efficient search strategy overall.}, language = {en} } @article{NezhadhaghighiChechkinMetzler2014, author = {Nezhadhaghighi, M. Ghasemi and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Numerical approach to unbiased and driven generalized elastic model}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4858425}, pages = {9}, year = {2014}, abstract = {From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent beta characterizing the growth of the mean squared displacement <(delta h)(2)> of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.}, language = {en} } @article{PalyulinMetzler2014, author = {Palyulin, Vladimir V. and Metzler, Ralf}, title = {Speeding up the first-passage for subdiffusion by introducing a finite potential barrier}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/3/032002}, pages = {13}, year = {2014}, abstract = {We show that for a subdiffusive continuous time random walk with scale-free waiting time distribution the first-passage dynamics on a finite interval can be optimized by introduction of a piecewise linear potential barrier. Analytical results for the survival probability and first-passage density based on the fractional Fokker-Planck equation are shown to agree well with Monte Carlo simulations results. As an application we discuss an improved design for efficient translocation of gradient copolymers compared to homopolymer translocation in a quasi-equilibrium approximation.}, language = {en} } @article{SandersLomholtLizanaetal.2014, author = {Sanders, Lloyd P. and Lomholt, Michael A. and Lizana, Ludvig and Fogelmark, Karl and Metzler, Ralf and Ambjoernsson, Tobias}, title = {Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/11/113050}, pages = {14}, year = {2014}, abstract = {Low-dimensional, many-body systems are often characterized by ultraslow dynamics. We study a labelled particle in a generic system of identical particles with hard-core interactions in a strongly disordered environment. The disorder is manifested through intermittent motion with scale-free sticking times at the single particle level. While for a non-interacting particle we find anomalous diffusion of the power-law form < x(2)(t)> similar or equal to t(alpha) of the mean squared displacement with 0 < alpha < 1, we demonstrate here that the combination of the disordered environment with the many-body interactions leads to an ultraslow, logarithmic dynamics < x(2)(t)> similar or equal to log(1/2)t with a universal 1/2 exponent. Even when a characteristic sticking time exists but the fluctuations of sticking times diverge we observe the mean squared displacement < x(2)(t)> similar or equal to t(gamma) with 0 < gamma < 1/2, that is slower than the famed Harris law < x(2)(t)> similar or equal to t(1/2) without disorder. We rationalize the results in terms of a subordination to a counting process, in which each transition is dominated by the forward waiting time of an ageing continuous time process.}, language = {en} } @article{MetzlerSandersLomholtetal.2014, author = {Metzler, Ralf and Sanders, L. and Lomholt, M. A. and Lizana, L. and Fogelmark, K. and Ambjoernsson, Tobias}, title = {Ageing single file motion}, series = {The European physical journal}, volume = {223}, journal = {The European physical journal}, number = {14}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2014-02333-5}, pages = {3287 -- 3293}, year = {2014}, language = {en} } @article{CherstvyMetzler2014, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {90}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.90.012134}, pages = {11}, year = {2014}, abstract = {We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) similar to vertical bar x vertical bar(alpha) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x, t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus vertical bar alpha vertical bar of the scaling exponent. The fluctuations appear to diverge when the critical value alpha = 2 is approached, while for even larger alpha the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.}, language = {en} } @article{GoychukKharchenkoMetzler2014, author = {Goychuk, Igor and Kharchenko, Vasyl O. and Metzler, Ralf}, title = {How Molecular Motors Work in the Crowded Environment of Living Cells: Coexistence and Efficiency of Normal and Anomalous Transport}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0091700}, pages = {7}, year = {2014}, abstract = {Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.}, language = {en} } @article{SchulzBarkaiMetzler2014, author = {Schulz, Johannes H. P. and Barkai, Eli and Metzler, Ralf}, title = {Aging renewal theory and application to random walks}, series = {Physical review : X, Expanding access}, volume = {4}, journal = {Physical review : X, Expanding access}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.4.011028}, pages = {24}, year = {2014}, abstract = {We discuss a renewal process in which successive events are separated by scale-free waiting time periods. Among other ubiquitous long-time properties, this process exhibits aging: events counted initially in a time interval [0, t] statistically strongly differ from those observed at later times [t(a,) t(a) + t]. The versatility of renewal theory is owed to its abstract formulation. Renewals can be interpreted as steps of a random walk, switching events in two-state models, domain crossings of a random motion, etc. In complex, disordered media, processes with scale-free waiting times play a particularly prominent role. We set up a unified analytical foundation for such anomalous dynamics by discussing in detail the distribution of the aging renewal process. We analyze its half-discrete, half-continuous nature and study its aging time evolution. These results are readily used to discuss a scale-free anomalous diffusion process, the continuous-time random walk. By this, we not only shed light on the profound origins of its characteristic features, such as weak ergodicity breaking, along the way, we also add an extended discussion on aging effects. In particular, we find that the aging behavior of time and ensemble averages is conceptually very distinct, but their time scaling is identical at high ages. Finally, we show how more complex motion models are readily constructed on the basis of aging renewal dynamics.}, language = {en} } @article{PalyulinChechkinMetzler2014, author = {Palyulin, Vladimir V. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Levy flights do not always optimize random blind search for sparse targets}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {8}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1320424111}, pages = {2931 -- 2936}, year = {2014}, abstract = {It is generally believed that random search processes based on scale-free, Levy stable jump length distributions (Levy flights) optimize the search for sparse targets. Here we show that this popular search advantage is less universal than commonly assumed. We study the efficiency of a minimalist search model based on Levy flights in the absence and presence of an external drift (underwater current, atmospheric wind, a preference of the walker owing to prior experience, or a general bias in an abstract search space) based on two different optimization criteria with respect to minimal search time and search reliability (cumulative arrival probability). Although Levy flights turn out to be efficient search processes when the target is far from the starting point, or when relative to the starting point the target is upstream, we show that for close targets and for downstream target positioning regular Brownian motion turns out to be the advantageous search strategy. Contrary to claims that Levy flights with a critical exponent alpha = 1 are optimal for the search of sparse targets in different settings, based on our optimization parameters the optimal a may range in the entire interval (1, 2) and especially include Brownian motion as the overall most efficient search strategy.}, language = {en} } @article{TalukderSenChakrabortietal.2014, author = {Talukder, Srijeeta and Sen, Shrabani and Chakraborti, Prantik and Metzler, Ralf and Banik, Suman K. and Chaudhury, Pinaki}, title = {Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4869112}, pages = {10}, year = {2014}, abstract = {We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction epsilon(hb)(AT) for an AT base pair and the ring factor. turn out to be the most sensitive parameters. In addition, the stacking interaction epsilon(st)(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization. (c) 2014 AIP Publishing LLC.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Mixing and segregation of ring polymers: spatial confinement and molecular crowding effects}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/5/053047}, pages = {19}, year = {2014}, abstract = {During the life cycle of bacterial cells the non-mixing of the two ring-shaped daughter genomes is an important prerequisite for the cell division process. Mimicking the environments inside highly crowded biological cells, we study the dynamics and statistical behavior of two flexible ring polymers in the presence of cylindrical confinement and crowding molecules. From extensive computer simulations we determine the degree of ring-ring overlap and the number of inter-monomer contacts for varying volume fractions phi of crowders. We also examine the entropic demixing of polymer rings in the presence of mobile crowders and determine the characteristic times of the internal polymer dynamics. Effects of the ring length on ring-ring overlap are also analyzed. In particular, on systematic variation of the fraction of crowding molecules, a (1 - phi)-scaling is found for the ring-ring overlap length along the cylinder axis, and a non-monotonic dependence of the 3D ring-ring contact number with a maximum at phi approximate to 0.2 is obtained. Our results demonstrate that polymer rings are demixed and separated by particular entropy-favourable partitioning of crowders along the axis of the cylindrical simulation box. These findings help to rationalize the implications of macromolecular crowding for circular DNA molecules in confined spaces inside bacteria as well as in localized cellular compartments inside eukaryotic cells.}, language = {en} } @article{GodecChechkinBarkaietal.2014, author = {Godec, Aljaz and Chechkin, Aleksei V. and Barkai, Eli and Kantz, Holger and Metzler, Ralf}, title = {Localisation and universal fluctuations in ultraslow diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {49}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/49/492002}, pages = {10}, year = {2014}, abstract = {We study ultraslow diffusion processes with logarithmic mean squared displacement (MSD) < x(2)(t)> similar or equal to log(gamma)t. Comparison of annealed (renewal) continuous time random walks (CTRWs) with logarithmic waiting time distribution psi(tau) similar or equal to 1/(tau log(1+gamma)tau) and Sinai diffusion in quenched random landscapes reveals striking similarities, despite the great differences in their physical nature. In particular, they exhibit a weakly non-ergodic disparity of the time-averaged and ensemble-averaged MSDs. Remarkably, for the CTRW we observe that the fluctuations of time averages become universal, with an exponential suppression of mobile trajectories. We discuss the fundamental connection between the Golosov localization effect and non-ergodicity in the sense of the disparity between ensemble-averaged MSD and time-averaged MSD.}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Ageing and confinement in non-ergodic heterogeneous diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {48}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/48/485002}, pages = {18}, year = {2014}, abstract = {We study the effects of ageing-the time delay between initiation of the physical process at t = 0 and start of observation at some time t(a) > 0-and spatial confinement on the properties of heterogeneous diffusion processes (HDPs) with deterministic power-law space-dependent diffusivities, D(x) = D-0 vertical bar x vertical bar(alpha). From analysis of the ensemble and time averaged mean squared displacements and the ergodicity breaking parameter quantifying the inherent degree of irreproducibility of individual realizations of the HDP we obtain striking similarities to ageing subdiffusive continuous time random walks with scale-free waiting time distributions. We also explore how both processes can be distinguished. For confined HDPs we study the long-time saturation of the ensemble and time averaged particle displacements as well as the magnitude of the inherent scatter of time averaged displacements and contrast the outcomes to the results known for other anomalous diffusion processes under confinement.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Sensing viruses by mechanical tension of DNA in responsive hydrogels}, series = {Physical review : X, Expanding access}, volume = {4}, journal = {Physical review : X, Expanding access}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.4.021002}, pages = {13}, year = {2014}, abstract = {The rapid worldwide spread of severe viral infections, often involving novel mutations of viruses, poses major challenges to our health-care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for broad applications in local health-care centers, such tools should be relatively cheap and easy to use. In this paper, we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of prestretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay as a possible tool for efficient and specific virus screening.}, language = {en} } @article{KruesemannGodecMetzler2014, author = {Kr{\"u}semann, Henning and Godec, Aljaz and Metzler, Ralf}, title = {First-passage statistics for aging diffusion in systems with annealed and quenched disorder}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {89}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.89.040101}, pages = {5}, year = {2014}, abstract = {Aging, the dependence of the dynamics of a physical process on the time t(a) since its original preparation, is observed in systems ranging from the motion of charge carriers in amorphous semiconductors over the blinking dynamics of quantum dots to the tracer dispersion in living biological cells. Here we study the effects of aging on one of the most fundamental properties of a stochastic process, the first-passage dynamics. We find that for an aging continuous time random walk process, the scaling exponent of the density of first-passage times changes twice as the aging progresses and reveals an intermediate scaling regime. The first-passage dynamics depends on t(a) differently for intermediate and strong aging. Similar crossovers are obtained for the first-passage dynamics for a confined and driven particle. Comparison to the motion of an aged particle in the quenched trap model with a bias shows excellent agreement with our analytical findings. Our results demonstrate how first-passage measurements can be used to unravel the age t(a) of a physical system.}, language = {en} } @article{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Deformation propagation in responsive polymer network films}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {141}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4893056}, pages = {9}, year = {2014}, abstract = {We study the elastic deformations in a cross-linked polymer network film triggered by the binding of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dynamics simulations we quantify how far the network deformations propagate depending on the elasticity parameters of the network and the adhesion strength of the particles. We examine the dynamics of the collective area shrinkage of the network and obtain some simple relations for the associated characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is distributed between stretching and compression modes in response to the particle binding. We also examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky particles in the polymer network film as a function of the particle-particle separation. The results of this computational study provide new insight into collective phenomena in soft polymer network films and may, in particular, be applied to applications for visual detection of pathogens such as viruses via a macroscopic response of thin films of cross-linked hydrogels. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{GoychukKharchenkoMetzler2014, author = {Goychuk, Igor and Kharchenko, Vasyl O. and Metzler, Ralf}, title = {Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp01234h}, pages = {16524 -- 16535}, year = {2014}, abstract = {The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c3sm52846d}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} } @article{GoychukKharchenkoMetzler2014, author = {Goychuk, Igor A. and Kharchenko, Vasyl O. and Metzler, Ralf}, title = {Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, number = {16}, publisher = {the Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, pages = {16524 -- 16535}, year = {2014}, abstract = {The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.}, language = {en} } @article{BauerGodecMetzler2014, author = {Bauer, Maximilian and Godec, Aljaž and Metzler, Ralf}, title = {Diffusion of finite-size particles in two-dimensional channels with random wall configurations}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {16}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {13}, publisher = {RSC Publications}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C3CP55160A}, pages = {6118 -- 6128}, year = {2014}, abstract = {Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].}, language = {en} } @article{SandevMetzlerTomovski2014, author = {Sandev, Trifce and Metzler, Ralf and Tomovski, Zivorad}, title = {Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise}, series = {Journal of mathematical physics}, volume = {55}, journal = {Journal of mathematical physics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0022-2488}, doi = {10.1063/1.4863478}, pages = {23}, year = {2014}, abstract = {We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion.}, language = {en} } @article{EliazarMetzler2013, author = {Eliazar, Iddo and Metzler, Ralf}, title = {Anomalous statistics of random relaxations in random environments}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {87}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.87.022141}, pages = {12}, year = {2013}, abstract = {We comprehensively analyze the emergence of anomalous statistics in the context of the random relaxation ( RARE) model [Eliazar and Metzler, J. Chem. Phys. 137, 234106 ( 2012)], a recently introduced versatile model of random relaxations in random environments. The RARE model considers excitations scattered randomly across a metric space around a reaction center. The excitations react randomly with the center, the reaction rates depending on the excitations' distances from this center. Relaxation occurs upon the first reaction between an excitation and the center. Addressing both the relaxation time and the relaxation range, we explore when these random variables display anomalous statistics, namely, heavy tails at zero and at infinity that manifest, respectively, exceptionally high occurrence probabilities of very small and very large outliers. A cohesive set of closed-form analytic results is established, determining precisely when such anomalous statistics emerge.}, language = {en} } @article{KursaweSchulzMetzler2013, author = {Kursawe, Jochen and Schulz, Johannes H. P. and Metzler, Ralf}, title = {Transient aging in fractional brownian and langevin-equation motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {88}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.88.062124}, pages = {13}, year = {2013}, abstract = {Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recently it was demonstrated that fractional Brownian motion and fractional Langevin-equation motion under external confinement are transiently nonergodic-time and ensemble averages behave differently-from the moment when the particle starts to sense the confinement. Here we show that these processes also exhibit transient aging, that is, physical observables such as the time-averaged mean-squared displacement depend on the time lag between the initiation of the system at time t = 0 and the start of the measurement at the aging time t(a). In particular, it turns out that for fractional Langevin-equation motion the aging dependence on ta is different between the cases of free and confined motion. We obtain explicit analytical expressions for the aged moments of the particle position as well as the time-averaged mean-squared displacement and present a numerical analysis of this transient aging phenomenon.}, language = {en} } @article{BauerMetzler2013, author = {Bauer, Maximilian and Metzler, Ralf}, title = {In vivo facilitated diffusion model}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0053956}, pages = {8}, year = {2013}, abstract = {Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.}, language = {en} } @article{GodecMetzler2013, author = {Godec, Aljaz and Metzler, Ralf}, title = {Finite-Time effects and ultraweak ergodicity breaking in superdiffusive dynamics}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.020603}, pages = {5}, year = {2013}, abstract = {We study the ergodic properties of superdiffusive, spatiotemporally coupled Levy walk processes. For trajectories of finite duration, we reveal a distinct scatter of the scaling exponents of the time averaged mean squared displacement (delta x(2)) over bar around the ensemble value 3 - alpha (1 < alpha < 2) ranging from ballistic motion to subdiffusion, in strong contrast to the behavior of subdiffusive processes. In addition we find a significant dependence of the average of (delta x(2)) over bar over an ensemble of trajectories as a function of the finite measurement time. This so-called finite-time amplitude depression and the scatter of the scaling exponent is vital in the quantitative evaluation of superdiffusive processes. Comparing the long time average of the second moment with the ensemble mean squared displacement, these only differ by a constant factor, an ultraweak ergodicity breaking.}, language = {en} } @article{SchulzBarkaiMetzler2013, author = {Schulz, Johannes H. P. and Barkai, Eli and Metzler, Ralf}, title = {Aging effects and population splitting in single-particle trajectoryaverages}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.020602}, pages = {5}, year = {2013}, abstract = {We study time averages of single particle trajectories in scale-free anomalous diffusion processes, in which the measurement starts at some time t(a) > 0 after initiation of the process at t = 0. Using aging renewal theory, we show that for such nonstationary processes a large class of observables are affected by a unique aging function, which is independent of boundary conditions or the external forces. Moreover, we discuss the implications of aging induced population splitting: with growing age ta of the process, an increasing fraction of particles remains motionless in a measurement of fixed duration. Consequences for single biomolecule tracking in live cells are discussed.}, language = {en} } @article{CherstvyMetzler2013, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {15}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53056f}, pages = {20220 -- 20235}, year = {2013}, abstract = {We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.}, language = {en} } @article{VahabiSchulzShokrietal.2013, author = {Vahabi, Mahsa and Schulz, Johannes H. P. and Shokri, Babak and Metzler, Ralf}, title = {Area coverage of radial Levy flights with periodic boundary conditions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {87}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.87.042136}, pages = {10}, year = {2013}, abstract = {We consider the area coverage of radial Levy flights in a finite square area with periodic boundary conditions. From simulations we show how the fractal path dimension d(f) and thus the degree of area coverage depends on the number of steps of the trajectory, the size of the area, and the resolution of the applied box counting algorithm. For sufficiently long trajectories and not too high resolution, the fractal dimension returned by the box counting method equals two, and in that sense the Levy flight fully covers the area. Otherwise, the determined fractal dimension equals the stable index of the distribution of jump lengths of the Levy flight. We provide mathematical expressions for the turnover between these two scaling regimes. As complementary methods to analyze confined Levy flights we investigate fractional order moments of the position for which we also provide scaling arguments. Finally, we study the time evolution of the probability density function and the first passage time density of Levy flights in a square area. Our findings are of interest for a general understanding of Levy flights as well as for the analysis of recorded trajectories of animals searching for food or for human motion patterns.}, language = {en} } @article{JeonLeijnseOddershedeetal.2013, author = {Jeon, Jae-Hyung and Leijnse, Natascha and Oddershede, Lene B. and Metzler, Ralf}, title = {Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions}, series = {New journal of physics : the open-access journal for physics}, volume = {15}, journal = {New journal of physics : the open-access journal for physics}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/15/4/045011}, pages = {16}, year = {2013}, abstract = {We report the results of single tracer particle tracking by optical tweezers and video microscopy in micellar solutions. From careful analysis in terms of different stochastic models, we show that the polystyrene tracer beads of size 0.52-2.5 mu m after short-time normal diffusion turn over to perform anomalous diffusion of the form < r(2)(t)> similar or equal to t(alpha) with alpha approximate to 0.3. This free anomalous diffusion is ergodic and consistent with a description in terms of the generalized Langevin equation with a power-law memory kernel. With optical tweezers tracking, we unveil a power-law relaxation over several decades in time to the thermal plateau value under the confinement of the harmonic tweezer potential, as predicted previously (Phys. Rev. E 85 021147 (2012)). After the subdiffusive motion in the millisecond range, the motion becomes faster and turns either back to normal Brownian diffusion or to even faster superdiffusion, depending on the size of the tracer beads.}, language = {en} } @article{MaityBandyopadhyayChattopadhyayetal.2013, author = {Maity, Alok Kumar and Bandyopadhyay, Arnab and Chattopadhyay, Sudip and Chaudhuri, Jyotipratim Ray and Metzler, Ralf and Chaudhury, Pinaki and Banik, Suman K.}, title = {Quantification of noise in bifunctionality-induced post-translational modification}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {88}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.88.032716}, pages = {7}, year = {2013}, abstract = {We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced signal transduction within the members of a bacterial two-component system. The proposed model takes into account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the model via Langevin equations, which are then solved within the framework of linear noise approximation. The resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics has been analyzed.}, language = {en} } @article{JeonBarkaiMetzler2013, author = {Jeon, Jae-Hyung and Barkai, Eli and Metzler, Ralf}, title = {Noisy continuous time random walks}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {139}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4816635}, pages = {15}, year = {2013}, abstract = {Experimental studies of the diffusion of biomolecules within biological cells are routinely confronted with multiple sources of stochasticity, whose identification renders the detailed data analysis of single molecule trajectories quite intricate. Here, we consider subdiffusive continuous time random walks that represent a seminal model for the anomalous diffusion of tracer particles in complex environments. This motion is characterized by multiple trapping events with infinite mean sojourn time. In real physical situations, however, instead of the full immobilization predicted by the continuous time random walk model, the motion of the tracer particle shows additional jiggling, for instance, due to thermal agitation of the environment. We here present and analyze in detail an extension of the continuous time random walk model. Superimposing the multiple trapping behavior with additive Gaussian noise of variable strength, we demonstrate that the resulting process exhibits a rich variety of apparent dynamic regimes. In particular, such noisy continuous time random walks may appear ergodic, while the bare continuous time random walk exhibits weak ergodicity breaking. Detailed knowledge of this behavior will be useful for the truthful physical analysis of experimentally observed subdiffusion.}, language = {en} } @article{SchulzChechkinMetzler2013, author = {Schulz, Johannes H. P. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Correlated continuous time random walks - combining scale-invariance with long-range memory for spatial and temporal dynamics}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {46}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {47}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/46/47/475001}, pages = {22}, year = {2013}, abstract = {Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Levy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties.}, language = {en} } @article{CherstvyChechkinMetzler2013, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes}, series = {New journal of physics : the open-access journal for physics}, volume = {15}, journal = {New journal of physics : the open-access journal for physics}, number = {15}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/15/8/083039}, pages = {13}, year = {2013}, abstract = {We demonstrate the non-ergodicity of a simple Markovian stochastic process with space-dependent diffusion coefficient D(x). For power-law forms D(x) similar or equal to vertical bar x vertical bar(alpha), this process yields anomalous diffusion of the form < x(2)(t)> similar or equal to t(2/(2-alpha)). Interestingly, in both the sub- and superdiffusive regimes we observe weak ergodicity breaking: the scaling of the time-averaged mean-squared displacement <(delta(2)(Delta))over bar> remains linear in the lag time Delta and thus differs from the corresponding ensemble average < x(2)(t)>. We analyse the non-ergodic behaviour of this process in terms of the time-averaged mean- squared displacement (delta(2)) over bar and its random features, i.e. the statistical distribution of (delta(2)) over bar and the ergodicity breaking parameters. The heterogeneous diffusion model represents an alternative approach to non- ergodic, anomalous diffusion that might be particularly relevant for diffusion in heterogeneous media.}, language = {en} } @article{LomholtLizanaMetzleretal.2013, author = {Lomholt, Michael A. and Lizana, Ludvig and Metzler, Ralf and Ambjoernsson, Tobias}, title = {Microscopic origin of the logarithmic time evolution of aging processes in complex systems}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {20}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.208301}, pages = {5}, year = {2013}, abstract = {There exists compelling experimental evidence in numerous systems for logarithmically slow time evolution, yet its full theoretical understanding remains elusive. We here introduce and study a generic transition process in complex systems, based on nonrenewal, aging waiting times. Each state n of the system follows a local clock initiated at t = 0. The random time tau between clock ticks follows the waiting time density psi (tau). Transitions between states occur only at local clock ticks and are hence triggered by the local forward waiting time, rather than by psi (tau). For power-law forms psi (tau) similar or equal to tau(-1-alpha) (0 < alpha < 1) we obtain a logarithmic time evolution of the state number < n(t)> similar or equal to log(t/t(0)), while for alpha > 2 the process becomes normal in the sense that < n(t)> similar or equal to t. In the intermediate range 1 < alpha < 2 we find the power-law growth < n(t)> similar or equal to t(alpha-1). Our model provides a universal description for transition dynamics between aging and nonaging states.}, language = {en} } @article{PulkkinenMetzler2013, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Distance matters the impact of gene proximity in bacterial gene regulation}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {19}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.198101}, pages = {5}, year = {2013}, abstract = {Following recent discoveries of colocalization of downstream-regulating genes in living cells, the impact of the spatial distance between such genes on the kinetics of gene product formation is increasingly recognized. We here show from analytical and numerical analysis that the distance between a transcription factor (TF) gene and its target gene drastically affects the speed and reliability of transcriptional regulation in bacterial cells. For an explicit model system, we develop a general theory for the interactions between a TF and a transcription unit. The observed variations in regulation efficiency are linked to the magnitude of the variation of the TF concentration peaks as a function of the binding site distance from the signal source. Our results support the role of rapid binding site search for gene colocalization and emphasize the role of local concentration differences.}, language = {en} } @article{JavanainenHammarenMonticellietal.2013, author = {Javanainen, Matti and Hammaren, Henrik and Monticelli, Luca and Jeon, Jae-Hyung and Miettinen, Markus S. and Martinez-Seara, Hector and Metzler, Ralf and Vattulainen, Ilpo}, title = {Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes}, series = {Faraday discussions}, volume = {161}, journal = {Faraday discussions}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-6640}, doi = {10.1039/c2fd20085f}, pages = {397 -- 417}, year = {2013}, abstract = {Lateral diffusion plays a crucial role in numerous processes that take place in cell membranes, yet it is quite poorly understood in native membranes characterized by, e.g., domain formation and large concentration of proteins. In this article, we use atomistic and coarse-grained simulations to consider how packing of membranes and crowding with proteins affect the lateral dynamics of lipids and membrane proteins. We find that both packing and protein crowding have a profound effect on lateral diffusion, slowing it down. Anomalous diffusion is observed to be an inherent property in both protein-free and protein-rich membranes, and the time scales of anomalous diffusion and the exponent associated with anomalous diffusion are found to strongly depend on packing and crowding. Crowding with proteins also has a striking effect on the decay rate of dynamical correlations associated with lateral single-particle motion, as the transition from anomalous to normal diffusion is found to take place at macroscopic time scales: while in protein-poor conditions normal diffusion is typically observed in hundreds of nanoseconds, in protein-rich conditions the onset of normal diffusion is tens of microseconds, and in the most crowded systems as large as milliseconds. The computational challenge which results from these time scales is not easy to deal with, not even in coarse-grained simulations. We also briefly discuss the physical limits of protein motion. Our results suggest that protein concentration is anything but constant in the plane of cell membranes. Instead, it is strongly dependent on proteins' preference for aggregation.}, language = {en} } @article{MattosMejiaMonasterioMetzleretal.2012, author = {Mattos, Thiago G. and Mejia-Monasterio, Carlos and Metzler, Ralf and Oshanin, Gleb}, title = {First passages in bounded domains When is the mean first passage time meaningful?}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {86}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.86.031143}, pages = {8}, year = {2012}, abstract = {We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(omega) distribution of the random variable omega = tau(1)/(tau(1) + tau(2)), which is a measure for how similar the first passage times tau(1) and tau(2) are of two independent realizations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(omega) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behavior. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behavior, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(omega), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behavior even in bounded domains, in which all moments of the first passage distribution exist.}, language = {en} } @article{JeonMetzler2012, author = {Jeon, Jae-Hyung and Metzler, Ralf}, title = {Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {85}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.85.021147}, pages = {8}, year = {2012}, abstract = {Single-particle tracking has become a standard tool for the investigation of diffusive properties, especially in small systems such as biological cells. Usually the resulting time series are analyzed in terms of time averages over individual trajectories. Here we study confined normal as well as anomalous diffusion, modeled by fractional Brownian motion and the fractional Langevin equation, and show that even for such ergodic systems time-averaged quantities behave differently from their ensemble-averaged counterparts, irrespective of how long the measurement time becomes. Knowledge of the exact behavior of time averages is therefore fundamental for the proper physical interpretation of measured time series, in particular, for extraction of the relaxation time scale from data.}, language = {en} } @article{PalyulinMetzler2012, author = {Palyulin, Vladimir V. and Metzler, Ralf}, title = {How a finite potential barrier decreases the mean first-passage time}, series = {Journal of statistical mechanics: theory and experiment}, journal = {Journal of statistical mechanics: theory and experiment}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/2012/03/L03001}, pages = {10}, year = {2012}, abstract = {We consider the mean first-passage time of a random walker moving in a potential landscape on a finite interval, the starting and end points being at different potentials. From analytical calculations and Monte Carlo simulations we demonstrate that the mean first-passage time for a piecewise linear curve between these two points is minimized by the introduction of a potential barrier. Due to thermal fluctuations, this barrier may be crossed. It turns out that the corresponding expense for this activation is less severe than the gain from an increased slope towards the end point. In particular, the resulting mean first-passage time is shorter than for a linear potential drop between the two points.}, language = {en} } @article{MagdziarzMetzlerSzczotkaetal.2012, author = {Magdziarz, Marcin and Metzler, Ralf and Szczotka, Wladyslaw and Zebrowski, Piotr}, title = {Correlated continuous-time random walks-scaling limits and Langevin picture}, series = {Journal of statistical mechanics: theory and experiment}, journal = {Journal of statistical mechanics: theory and experiment}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/2012/04/P04010}, pages = {18}, year = {2012}, abstract = {In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations.}, language = {en} } @article{LeijnseJeonLoftetal.2012, author = {Leijnse, N. and Jeon, J. -H. and Loft, S. and Metzler, Ralf and Oddershede, L. B.}, title = {Diffusion inside living human cells}, series = {European physical journal special topics}, volume = {204}, journal = {European physical journal special topics}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2012-01553-y}, pages = {75 -- 84}, year = {2012}, abstract = {Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell periphery, occurrences of weak ergodicity breaking are observed, similar to the recent observations inside living fission yeast cells [1].}, language = {en} } @article{MagdziarzMetzlerSzczotkaetal.2012, author = {Magdziarz, Marcin and Metzler, Ralf and Szczotka, Wladyslaw and Zebrowski, Piotr}, title = {Correlated continuous-time random walks in external force fields}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {85}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.85.051103}, pages = {5}, year = {2012}, abstract = {We study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time T-i is equal to the previous waiting time Ti-1 plus a small increment. Based on the associated coupled Langevin equations the force field is systematically introduced. We show that in a confining potential the relaxation dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail. We also show that the process exhibits aging and ergodicity breaking.}, language = {en} } @article{BauerMetzler2012, author = {Bauer, Maximilian and Metzler, Ralf}, title = {Generalized facilitated diffusion model for DNA-binding proteins with search and recognition states}, series = {Biophysical journal}, volume = {102}, journal = {Biophysical journal}, number = {10}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2012.04.008}, pages = {2321 -- 2330}, year = {2012}, abstract = {Transcription factors (TFs) such as the lac repressor find their target sequence on DNA at remarkably high rates. In the established Berg-von Hippel model for this search process, the TF alternates between three-dimensional diffusion in the bulk solution and one-dimensional sliding along the DNA chain. To overcome the so-called speed-stability paradox, in similar models the TF was considered as being present in two conformations (search state and recognition state) between which it switches stochastically. Combining both the facilitated diffusion model and alternating states, we obtain a generalized model. We explicitly treat bulk excursions for rodlike chains arranged in parallel and consider a simplified model for coiled DNA. Compared to previously considered facilitated diffusion models, corresponding to limiting cases of our generalized model, we surprisingly find a reduced target search rate. Moreover, at optimal conditions there is no longer an equipartition between the time spent by the protein on and off the DNA chain.}, language = {en} } @article{BarkaiGariniMetzler2012, author = {Barkai, Eli and Garini, Yuval and Metzler, Ralf}, title = {Strange Kinetics of single molecules in living cells}, series = {Physics today}, volume = {65}, journal = {Physics today}, number = {8}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0031-9228}, pages = {29 -- 35}, year = {2012}, language = {en} } @article{AdamcikJeonKarczewskietal.2012, author = {Adamcik, Jozef and Jeon, Jae-Hyung and Karczewski, Konrad J. and Metzler, Ralf and Dietler, Giovanni}, title = {Quantifying supercoiling-induced denaturation bubbles in DNA}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm26089a}, pages = {8651 -- 8658}, year = {2012}, abstract = {In both eukaryotic and prokaryotic DNA sequences of 30-100 base-pairs rich in AT base-pairs have been identified at which the double helix preferentially unwinds. Such DNA unwinding elements are commonly associated with origins for DNA replication and transcription, and with chromosomal matrix attachment regions. Here we present a quantitative study of local DNA unwinding based on extensive single DNA plasmid imaging. We demonstrate that long-lived single-stranded denaturation bubbles exist in negatively supercoiled DNA, at the expense of partial twist release. Remarkably, we observe a linear relation between the degree of supercoiling and the bubble size, in excellent agreement with statistical modelling. Furthermore, we obtain the full distribution of bubble sizes and the opening probabilities at varying salt and temperature conditions. The results presented herein underline the important role of denaturation bubbles in negatively supercoiled DNA for biological processes such as transcription and replication initiation in vivo.}, language = {en} } @article{JeonMonneJavanainenetal.2012, author = {Jeon, Jae-Hyung and Monne, Hector Martinez-Seara and Javanainen, Matti and Metzler, Ralf}, title = {Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins}, series = {Physical review letters}, volume = {109}, journal = {Physical review letters}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.109.188103}, pages = {5}, year = {2012}, abstract = {Combining extensive molecular dynamics simulations of lipid bilayer systems of varying chemical compositions with single-trajectory analyses, we systematically elucidate the stochastic nature of the lipid motion. We observe subdiffusion over more than 4 orders of magnitude in time, clearly stretching into the submicrosecond domain. The lipid motion depends on the lipid chemistry, the lipid phase, and especially the presence of cholesterol. We demonstrate that fractional Langevin equation motion universally describes the lipid motion in all phases, including the gel phase, and in the presence of cholesterol. The results underline the relevance of anomalous diffusion in lipid bilayers and the strong effects of the membrane composition.}, language = {en} } @article{MetzlerJeon2012, author = {Metzler, Ralf and Jeon, Jae-Hyung}, title = {The role of ergodicity in anomalous stochastic processes - analysis of single-particle trajectories}, series = {Physica scripta : an international journal for experimental and theoretical physics}, volume = {86}, journal = {Physica scripta : an international journal for experimental and theoretical physics}, number = {5}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0031-8949}, doi = {10.1088/0031-8949/86/05/058510}, pages = {5}, year = {2012}, abstract = {Single-particle experiments produce time series x(t) of individual particle trajectories, frequently revealing anomalous diffusion behaviour. Typically, individual x(t) are evaluated in terms of time-averaged quantities instead of ensemble averages. Here we discuss the behaviour of the time-averaged mean squared displacement of different stochastic processes giving rise to anomalous diffusion. In particular, we pay attention to the ergodic properties of these processes, i.e. the (non)equivalence of time and ensemble averages.}, language = {en} } @article{EliazarMetzler2012, author = {Eliazar, Iddo and Metzler, Ralf}, title = {The RARE model a generalized approach to random relaxation processes in disordered systems}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {137}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4770266}, pages = {9}, year = {2012}, abstract = {This paper introduces and analyses a general statistical model, termed the RAndom RElaxations (RARE) model, of random relaxation processes in disordered systems. The model considers excitations that are randomly scattered around a reaction center in a general embedding space. The model's input quantities are the spatial scattering statistics of the excitations around the reaction center, and the chemical reaction rates between the excitations and the reaction center as a function of their mutual distance. The framework of the RARE model is versatile and a detailed stochastic analysis of the random relaxation processes is established. Analytic results regarding the duration and the range of the random relaxation processes, as well as the model's thermodynamic limit, are obtained in closed form. In particular, the case of power-law inputs, which turn out to yield stretched exponential relaxation patterns and asymptotically Paretian relaxation ranges, is addressed in detail.}, language = {en} } @article{SereshkiLomholtMetzler2012, author = {Sereshki, L. E. and Lomholt, M. A. and Metzler, Ralf}, title = {A solution to the subdiffusion-efficiency paradox inactive states enhance reaction efficiency at subdiffusion conditions in living cells}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {97}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {2}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/97/20008}, pages = {6}, year = {2012}, abstract = {Macromolecular crowding in living biological cells effects subdiffusion of larger biomolecules such as proteins and enzymes. Mimicking this subdiffusion in terms of random walks on a critical percolation cluster, we here present a case study of EcoRV restriction enzymes involved in vital cellular defence. We show that due to its so far elusive propensity to an inactive state the enzyme avoids non-specific binding and remains well-distributed in the bulk cytoplasm of the cell. Despite the reduced volume exploration capability of subdiffusion processes, this mechanism guarantees a high efficiency of the enzyme. By variation of the non-specific binding constant and the bond occupation probability on the percolation network, we demonstrate that reduced nonspecific binding are beneficial for efficient subdiffusive enzyme activity even in relatively small bacteria cells. Our results corroborate a more local picture of cellular regulation.}, language = {en} } @article{ChechkinZaidLomholtetal.2012, author = {Chechkin, Aleksei V. and Zaid, Irwin M. and Lomholt, Michael A. and Sokolov, Igor M. and Metzler, Ralf}, title = {Bulk-mediated diffusion on a planar surface full solution}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {86}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.86.041101}, pages = {11}, year = {2012}, abstract = {We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion.}, language = {en} } @article{SandevMetzlerTomovski2012, author = {Sandev, Trifce and Metzler, Ralf and Tomovski, Zivorad}, title = {Velocity and displacement correlation functions for fractional generalized Langevin equations}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {15}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {3}, publisher = {Versita}, address = {Warsaw}, issn = {1311-0454}, doi = {10.2478/s13540-012-0031-2}, pages = {426 -- 450}, year = {2012}, abstract = {We study analytically a generalized fractional Langevin equation. General formulas for calculation of variances and the mean square displacement are derived. Cases with a three parameter Mittag-Leffler frictional memory kernel are considered. Exact results in terms of the Mittag-Leffler type functions for the relaxation functions, average velocity and average particle displacement are obtained. The mean square displacement and variances are investigated analytically. Asymptotic behaviors of the particle in the short and long time limit are found. The model considered in this paper may be used for modeling anomalous diffusive processes in complex media including phenomena similar to single file diffusion or possible generalizations thereof. We show the importance of the initial conditions on the anomalous diffusive behavior of the particle.}, language = {en} } @article{TomovskiSandevMetzleretal.2012, author = {Tomovski, Zivorad and Sandev, Trifce and Metzler, Ralf and Dubbeldam, Johan}, title = {Generalized space-time fractional diffusion equation with composite fractional time derivative}, series = {Physica : europhysics journal ; A, Statistical mechanics and its applications}, volume = {391}, journal = {Physica : europhysics journal ; A, Statistical mechanics and its applications}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-4371}, doi = {10.1016/j.physa.2011.12.035}, pages = {2527 -- 2542}, year = {2012}, abstract = {We investigate the solution of space-time fractional diffusion equations with a generalized Riemann-Liouville time fractional derivative and Riesz-Feller space fractional derivative. The Laplace and Fourier transform methods are applied to solve the proposed fractional diffusion equation. The results are represented by using the Mittag-Leffler functions and the Fox H-function. Special cases of the initial and boundary conditions are considered. Numerical scheme and Grunwald-Letnikov approximation are also used to solve the space-time fractional diffusion equation. The fractional moments of the fundamental solution of the considered space-time fractional diffusion equation are obtained. Many known results are special cases of those obtained in this paper. We investigate also the solution of a space-time fractional diffusion equations with a singular term of the form delta(x). t-beta/Gamma(1-beta) (beta > 0).}, language = {en} }