@article{HerrmannMetzler2017, author = {Herrmann, Carl J. J. and Metzler, Ralf}, title = {A self-avoiding walk with neural delays as a model of fixational eye movements}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-13489-8}, pages = {1 -- 17}, year = {2017}, abstract = {Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.}, language = {en} } @misc{HerrmannMetzler2017, author = {Herrmann, Carl J. J. and Metzler, Ralf}, title = {A self-avoiding walk with neural delays as a model of fixational eye movements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403742}, pages = {17}, year = {2017}, abstract = {Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.}, language = {en} } @article{HerrmannMetzlerEngbert2017, author = {Herrmann, Carl J. J. and Metzler, Ralf and Engbert, Ralf}, title = {A self-avoiding walk with neural delays as a model of fixational eye movements}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-13489-8}, pages = {17}, year = {2017}, abstract = {Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.}, language = {en} } @article{KarCherstvyMetzler2017, author = {Kar, Prathitha and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp06922g}, pages = {7931 -- 7946}, year = {2017}, abstract = {Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells.}, language = {en} } @article{ChechkinKantzMetzler2017, author = {Chechkin, Aleksei V. and Kantz, Holger and Metzler, Ralf}, title = {Ageing effects in ultraslow continuous time random walks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {90}, journal = {The European physical journal : B, Condensed matter and complex systems}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80270-9}, pages = {12}, year = {2017}, abstract = {In ageing systems physical observables explicitly depend on the time span elapsing between the original initiation of the system and the actual start of the recording of the particle motion. We here study the signatures of ageing in the framework of ultraslow continuous time random walk processes with super-heavy tailed waiting time densities. We derive the density for the forward or recurrent waiting time of the motion as function of the ageing time, generalise the Montroll-Weiss equation for this process, and analyse the ageing behaviour of the ensemble and time averaged mean squared displacements.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @misc{Metzler2017, author = {Metzler, Ralf}, title = {Anomalous Diffusion in Membranes and the Cytoplasm of Biological Cells}, series = {Biophysical journal}, volume = {112}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2016.11.2577}, pages = {476A -- 476A}, year = {2017}, language = {en} } @article{SandevSokolovMetzleretal.2017, author = {Sandev, Trifce and Sokolov, Igor M. and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Beyond monofractional kinetics}, series = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, volume = {102}, journal = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0779}, doi = {10.1016/j.chaos.2017.05.001}, pages = {210 -- 217}, year = {2017}, abstract = {We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ChechkinSenoMetzleretal.2017, author = {Chechkin, Aleksei V. and Seno, Flavio and Metzler, Ralf and Sokolov, Igor M.}, title = {Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities}, series = {Physical review : X, Expanding access}, volume = {7}, journal = {Physical review : X, Expanding access}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.7.021002}, pages = {20}, year = {2017}, abstract = {A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.}, language = {en} } @article{PalyulinMantsevichKlagesetal.2017, author = {Palyulin, Vladimir V. and Mantsevich, Vladimir N. and Klages, Rainer and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Comparison of pure and combined search strategies for single and multiple targets}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {90}, journal = {The European physical journal : B, Condensed matter and complex systems}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80372-4}, pages = {20 -- 37}, year = {2017}, abstract = {We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump length distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.}, language = {en} }