@article{SarabadaniMetzlerAlaNissila2022, author = {Sarabadani, Jalal and Metzler, Ralf and Ala-Nissila, Tapio}, title = {Driven polymer translocation into a channel: Isoflux tension propagation theory and Langevin dynamics simulations}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, edition = {3}, publisher = {American Physical Society}, address = {College Park, Maryland, USA}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033003}, pages = {033003-1 -- 033003-14}, year = {2022}, abstract = {Isoflux tension propagation (IFTP) theory and Langevin dynamics (LD) simulations are employed to study the dynamics of channel-driven polymer translocation in which a polymer translocates into a narrow channel and the monomers in the channel experience a driving force fc. In the high driving force limit, regardless of the channel width, IFTP theory predicts τ ∝ f βc for the translocation time, where β = -1 is the force scaling exponent. Moreover, LD data show that for a very narrow channel fitting only a single file of monomers, the entropic force due to the subchain inside the channel does not play a significant role in the translocation dynamics and the force exponent β = -1 regardless of the force magnitude. As the channel width increases the number of possible spatial configurations of the subchain inside the channel becomes significant and the resulting entropic force causes the force exponent to drop below unity.}, language = {en} } @article{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Communications Physics}, volume = {5}, journal = {Communications Physics}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-022-01079-8}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @article{VilkAghionAvgaretal.2022, author = {Vilk, Ohad and Aghion, Erez and Avgar, Tal and Beta, Carsten and Nagel, Oliver and Sabri, Adal and Sarfati, Raphael and Schwartz, Daniel K. and Weiß, Matthias and Krapf, Diego and Nathan, Ran and Metzler, Ralf and Assaf, Michael}, title = {Unravelling the origins of anomalous diffusion}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, number = {3}, publisher = {American Physical Society}, address = {College Park, MD}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033055}, pages = {033055-1 -- 033055-16}, year = {2022}, abstract = {Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations ("Joseph effect"), fat-tailed probability density of increments ("Noah effect"), and nonstationarity ("Moses effect"). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology.}, language = {en} } @article{SecklerMetzler2022, author = {Seckler, Henrik and Metzler, Ralf}, title = {Bayesian deep learning for error estimation in the analysis of anomalous diffusion}, series = {Nature Communnications}, volume = {13}, journal = {Nature Communnications}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34305-6}, pages = {13}, year = {2022}, abstract = {Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusionmodel and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a wellcalibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.}, language = {en} } @article{SecklerMetzler2022, author = {Seckler, Henrik and Metzler, Ralf}, title = {Bayesian deep learning for error estimation in the analysis of anomalous diffusion}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-022-34305-6}, pages = {13}, year = {2022}, abstract = {Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.
Diffusive motions in complex environments such as living biological cells or soft matter systems can be analyzed with single-particle-tracking approaches, where accuracy of output may vary. The authors involve a machine-learning technique for decoding anomalous-diffusion data and provide an uncertainty estimate together with predicted output.}, language = {en} } @article{AwadMetzler2022, author = {Awad, Emad and Metzler, Ralf}, title = {Closed-form multi-dimensional solutions and asymptotic behaviours for subdiffusive processes with crossovers: II. Accelerating case}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {20}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac5a90}, pages = {29}, year = {2022}, abstract = {Anomalous diffusion with a power-law time dependence vertical bar R vertical bar(2)(t) similar or equal to t(alpha i) of the mean squared displacement occurs quite ubiquitously in numerous complex systems. Often, this anomalous diffusion is characterised by crossovers between regimes with different anomalous diffusion exponents alpha(i). Here we consider the case when such a crossover occurs from a first regime with alpha(1) to a second regime with alpha(2) such that alpha(2) > alpha(1), i.e., accelerating anomalous diffusion. A widely used framework to describe such crossovers in a one-dimensional setting is the bi-fractional diffusion equation of the so-called modified type, involving two time-fractional derivatives defined in the Riemann-Liouville sense. We here generalise this bi-fractional diffusion equation to higher dimensions and derive its multidimensional propagator (Green's function) for the general case when also a space fractional derivative is present, taking into consideration long-ranged jumps (Levy flights). We derive the asymptotic behaviours for this propagator in both the short- and long-time as well the short- and long-distance regimes. Finally, we also calculate the mean squared displacement, skewness and kurtosis in all dimensions, demonstrating that in the general case the non-Gaussian shape of the probability density function changes.}, language = {en} } @article{WangMetzlerCherstvy2022, author = {Wang, Wei and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {31}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp01741e}, pages = {18482 -- 18504}, year = {2022}, abstract = {How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD < x(2)(Delta)> and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.}, language = {en} } @article{ScottWeissSelhuberUnkeletal.2022, author = {Scott, Shane and Weiss, Matthias and Selhuber-Unkel, Christine and Barooji, Younes F. and Sabri, Adal and Erler, Janine T. and Metzler, Ralf and Oddershede, Lene B.}, title = {Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {25}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp01384c}, pages = {1513 -- 1537}, year = {2022}, abstract = {A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.}, language = {en} } @article{TomovskiMetzlerGerhold2022, author = {Tomovski, Živorad and Metzler, Ralf and Gerhold, Stefan}, title = {Fractional characteristic functions, and a fractional calculus approach for moments of random variables}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {25}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {4}, publisher = {De Gruyter}, address = {Berlin ; Boston}, issn = {1314-2224}, doi = {10.1007/s13540-022-00047-x}, pages = {1307 -- 1323}, year = {2022}, abstract = {In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented.}, language = {en} } @article{XuMetzlerWang2022, author = {Xu, Pengbo and Metzler, Ralf and Wang, Wanli}, title = {Infinite density and relaxation for Levy walks in an external potential}, series = {Physical review}, volume = {105}, journal = {Physical review}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.044118}, pages = {15}, year = {2022}, abstract = {Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly.}, language = {en} }