@article{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aba390}, pages = {17}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @misc{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, number = {1006}, issn = {1866-8372}, doi = {10.25932/publishup-48004}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480049}, pages = {18}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @article{WangCherstvyChechkinetal.2020, author = {Wang, Wei and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Thapa, Samudrajit and Seno, Flavio and Liu, Xianbin and Metzler, Ralf}, title = {Fractional Brownian motion with random diffusivity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {47}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aba467}, pages = {34}, year = {2020}, abstract = {Numerous examples for a priori unexpected non-Gaussian behaviour for normal and anomalous diffusion have recently been reported in single-particle tracking experiments. Here, we address the case of non-Gaussian anomalous diffusion in terms of a random-diffusivity mechanism in the presence of power-law correlated fractional Gaussian noise. We study the ergodic properties of this model via examining the ensemble- and time-averaged mean-squared displacements as well as the ergodicity breaking parameter EB quantifying the trajectory-to-trajectory fluctuations of the latter. For long measurement times, interesting crossover behaviour is found as function of the correlation time tau characterising the diffusivity dynamics. We unveil that at short lag times the EB parameter reaches a universal plateau. The corresponding residual value of EB is shown to depend only on tau and the trajectory length. The EB parameter at long lag times, however, follows the same power-law scaling as for fractional Brownian motion. We also determine a corresponding plateau at short lag times for the discrete representation of fractional Brownian motion, absent in the continuous-time formulation. These analytical predictions are in excellent agreement with results of computer simulations of the underlying stochastic processes. Our findings can help distinguishing and categorising certain nonergodic and non-Gaussian features of particle displacements, as observed in recent single-particle tracking experiments.}, language = {en} } @article{ThapaWyłomańskaSikoraetal.2021, author = {Thapa, Samudrajit and Wyłomańska, Agnieszka and Sikora, Grzegorz and Wagner, Caroline E. and Krapf, Diego and Kantz, Holger and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories}, series = {New Journal of Physics}, volume = {23}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges. ; IOP}, address = {Bad Honnef ; London}, issn = {1367-2630}, doi = {10.1088/1367-2630/abd50e}, pages = {22}, year = {2021}, abstract = {Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.}, language = {en} } @misc{ThapaWyłomańskaSikoraetal.2021, author = {Thapa, Samudrajit and Wyłomańska, Agnieszka and Sikora, Grzegorz and Wagner, Caroline E. and Krapf, Diego and Kantz, Holger and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1118}, issn = {1866-8372}, doi = {10.25932/publishup-49349}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-493494}, pages = {24}, year = {2021}, abstract = {Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.}, language = {en} } @article{SandevMetzlerChechkin2018, author = {Sandev, Trifce and Metzler, Ralf and Chechkin, Aleksei V.}, title = {From continuous time random walks to the generalized diffusion equation}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {21}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {1311-0454}, doi = {10.1515/fca-2018-0002}, pages = {10 -- 28}, year = {2018}, abstract = {We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases.}, language = {en} } @article{SandevIominKantzetal.2016, author = {Sandev, Trifce and Iomin, Alexander and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Comb Model with Slow and Ultraslow Diffusion}, series = {Mathematical modelling of natural phenomena}, volume = {11}, journal = {Mathematical modelling of natural phenomena}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0973-5348}, doi = {10.1051/mmnp/201611302}, pages = {18 -- 33}, year = {2016}, abstract = {We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process.}, language = {en} } @article{SandevChechkinKantzetal.2015, author = {Sandev, Trifce and Chechkin, Aleksei V. and Kantz, Holger and Metzler, Ralf}, title = {Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {18}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {1311-0454}, doi = {10.1515/fca-2015-0059}, pages = {1006 -- 1038}, year = {2015}, abstract = {We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed.}, language = {en} } @article{SafdariCherstvyChechkinetal.2015, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Thiel, Felix and Sokolov, Igor M. and Metzler, Ralf}, title = {Quantifying the non-ergodicity of scaled Brownian motion}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {37}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/37/375002}, pages = {18}, year = {2015}, abstract = {We examine the non-ergodic properties of scaled Brownian motion (SBM), a non-stationary stochastic process with a time dependent diffusivity of the form D(t) similar or equal to t(alpha-1). We compute the ergodicity breaking parameter EB in the entire range of scaling exponents a, both analytically and via extensive computer simulations of the stochastic Langevin equation. We demonstrate that in the limit of long trajectory lengths T and short lag times Delta the EB parameter as function of the scaling exponent a has no divergence at alpha - 1/2 and present the asymptotes for EB in different limits. We generalize the analytical and simulations results for the time averaged and ergodic properties of SBM in the presence of ageing, that is, when the observation of the system starts only a finite time span after its initiation. The approach developed here for the calculation of the higher time averaged moments of the particle displacement can be applied to derive the ergodic properties of other stochastic processes such as fractional Brownian motion.}, language = {en} } @article{MolinaGarciaSandevSafdarietal.2018, author = {Molina-Garcia, Daniel and Sandev, Trifce and Safdari, Hadiseh and Pagnini, Gianni and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Crossover from anomalous to normal diffusion}, series = {New Journal of Physics}, volume = {20}, journal = {New Journal of Physics}, publisher = {IOP Publishing Ltd}, address = {London und Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aae4b2}, pages = {28}, year = {2018}, abstract = {Abstract The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive-diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive-diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion-diffusion and subdiffusion-subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.}, language = {en} }