@article{DiBaldassarreKreibichVorogushynetal.2018, author = {Di Baldassarre, Giuliano and Kreibich, Heidi and Vorogushyn, Sergiy and Aerts, Jeroen and Arnbjerg-Nielsen, Karsten and Barendrecht, Marlies and Bates, Paul and Borga, Marco and Botzen, Wouter and Bubeck, Philip and De Marchi, Bruna and Llasat, Carmen Maria and Mazzoleni, Maurizio and Molinari, Daniela and Mondino, Elena and Mard, Johanna and Petrucci, Olga and Scolobig, Anna and Viglione, Alberto and Ward, Philip J.}, title = {Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-5629-2018}, pages = {5629 -- 5637}, year = {2018}, abstract = {One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs, which substantially reduce the probability of flooding at the time of implementation. Numerous scholars have problematized this approach. They have shown that increasing the levels of flood protection can attract more settlements and high-value assets in the areas protected by the new measures. Other studies have explored how structural measures can generate a sense of complacency, which can act to reduce preparedness. These paradoxical risk changes have been described as "levee effect", "safe development paradox" or "safety dilemma". In this commentary, we briefly review this phenomenon by critically analysing the intended benefits and unintended effects of structural flood protection, and then we propose an interdisciplinary research agenda to uncover these paradoxical dynamics of risk.}, language = {en} } @article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} }