@article{SchwanholdIobbiNivolLehmannetal.2018, author = {Schwanhold, Nadine and Iobbi-Nivol, Chantal and Lehmann, Angelika and Leimk{\"u}hler, Silke}, title = {Same but different}, series = {PLoS one}, volume = {13}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0201935}, pages = {24}, year = {2018}, abstract = {The maturation of bacterial molybdoenzymes is a complex process leading to the insertion of the bulky bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor into the apoenzyme. Most molybdoenzymes were shown to contain a specific chaperone for the insertion of the bis-MGD cofactor. Formate dehydrogenases (FDH) together with their molecular chaperone partner seem to display an exception to this specificity rule, since the chaperone FdhD has been proven to be involved in the maturation of all three FDH enzymes present in Escherichia colt. Multiple roles have been suggested for FdhD-like chaperones in the past, including the involvement in a sulfur transfer reaction from the L-cysteine desulfurase IscS to bis-MGD by the action of two cysteine residues present in a conserved CXXC motif of the chaperones. However, in this study we show by phylogenetic analyses that the CXXC motif is not conserved among FdhD-like chaperones. We compared in detail the FdhD-like homologues from Rhodobacter capsulatus and E. colt and show that their roles in the maturation of FDH enzymes from different subgroups can be exchanged. We reveal that bis-MGDbinding is a common characteristic of FdhD-like proteins and that the cofactor is bound with a sulfido-ligand at the molybdenum atom to the chaperone. Generally, we reveal that the cysteine residues in the motif CXXC of the chaperone are not essential for the production of active FDH enzymes.}, language = {en} } @article{TanabeLeimkuehlerDahl2019, author = {Tanabe, Tomohisa Sebastian and Leimk{\"u}hler, Silke and Dahl, Christiane}, title = {The functional diversity of the prokaryotic sulfur carrier protein TusA}, series = {Advances in microbial physiology}, volume = {75}, journal = {Advances in microbial physiology}, editor = {Poole, RK}, publisher = {Elsevier Acad. Press}, address = {Amsterdam}, isbn = {978-0-12-817715-0}, issn = {0065-2911}, doi = {10.1016/bs.ampbs.2019.07.004}, pages = {233 -- 277}, year = {2019}, abstract = {Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein.}, language = {en} } @article{ZupokGorkaSiemiatkowskaetal.2019, author = {Zupok, Arkadiusz and G{\´o}rka, Michał Jakub and Siemiatkowska, Beata and Skirycz, Aleksandra and Leimk{\"u}hler, Silke}, title = {Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli}, series = {Journal of bacteriology}, volume = {201}, journal = {Journal of bacteriology}, number = {17}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.00382-19}, pages = {15}, year = {2019}, abstract = {Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two (4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional NFe-4S) cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the L-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production. IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.}, language = {en} } @article{ZengLeimkuehlerWollenbergeretal.2017, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Fourmond, Vincent}, title = {Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.7b05480}, pages = {11559 -- 11567}, year = {2017}, abstract = {Sulfite oxidases are metalloenzymes that oxidize sulfite to sulfate at a molybdenum active site. In vertebrate sulfite oxidases, the electrons generated at the Mo center are transferred to an external electron acceptor via a heme domain, which can adopt two conformations: a "closed" conformation, suitable for internal electron transfer, and an "open" conformation suitable for intermolecular electron transfer. This conformational change is an integral part of the catalytic cycle. Sulfite oxidases have been wired to electrode surfaces, but their immobilization leads to a significant decrease in their catalytic activity, raising the question of the occurrence of the conformational change when the enzyme is on an electrode. We recorded and quantitatively modeled for the first time the transient response of the catalytic cycle of human sulfite oxidase immobilized on an electrode. We show that conformational changes still occur on the electrode, but at a lower rate than in solution, which is the reason for the decrease in activity of sulfite oxidases upon immobilization.}, language = {en} } @misc{Leimkuehler2017, author = {Leimk{\"u}hler, Silke}, title = {Shared function and moonlighting proteins in molybdenum cofactor biosynthesis}, series = {Biological chemistry}, volume = {398}, journal = {Biological chemistry}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2017-0110}, pages = {1009 -- 1026}, year = {2017}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is a highly conserved pathway in bacteria, archaea and eukaryotes. The molybdenum atom in Moco-containing enzymes is coordinated to the dithiolene group of a tricyclic pyranopterin monophosphate cofactor. The biosynthesis of Moco can be divided into three conserved steps, with a fourth present only in bacteria and archaea: (1) formation of cyclic pyranopterin monophosphate, (2) formation of molybdopterin (MPT), (3) insertion of molybdenum into MPT to form Mo-MPT, and (4) additional modification of Mo-MPT in bacteria with the attachment of a GMP or CMP nucleotide, forming the dinucleotide variants of Moco. While the proteins involved in the catalytic reaction of each step of Moco biosynthesis are highly conserved among the Phyla, a surprising link to other cellular pathways has been identified by recent discoveries. In particular, the pathways for FeS cluster assembly and thio-modifications of tRNA are connected to Moco biosynthesis by sharing the same protein components. Further, proteins involved in Moco biosynthesis are not only shared with other pathways, but additionally have moonlighting roles. This review gives an overview of Moco biosynthesis in bacteria and humans and highlights the shared function and moonlighting roles of the participating proteins.}, language = {en} } @article{BuehningFriemelLeimkuehler2017, author = {B{\"u}hning, Martin and Friemel, Martin and Leimk{\"u}hler, Silke}, title = {Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coil IscS and Human NFS1}, series = {Biochemistry}, volume = {56}, journal = {Biochemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b00627}, pages = {4592 -- 4605}, year = {2017}, abstract = {The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an L-cysteine desulfurase as an initial sulfur mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human L-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of similar to 60\%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm(5)s(2)U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.}, language = {en} } @article{KuecuekgoezeTeraoGarattinietal.2017, author = {Kuecuekgoeze, Goekhan and Terao, Mineko and Garattini, Enrico and Leimk{\"u}hler, Silke}, title = {Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse}, series = {Drug metabolism and disposition : the biological fate of chemicals}, volume = {45}, journal = {Drug metabolism and disposition : the biological fate of chemicals}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {0090-9556}, doi = {10.1124/dmd.117.075937}, pages = {947 -- 955}, year = {2017}, abstract = {Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli. The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N1-methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino) cinnamaldehyde (p-DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p-DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N1-methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is notmetabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different KM and kcat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40\% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30\% of superoxide radicals with the same substrate.}, language = {en} } @article{LemaireHonoreTempeletal.2019, author = {Lemaire, Olivier N. and Honore, Flora A. and Tempel, Sebastien and Fortier, Emma M. and Leimk{\"u}hler, Silke and Mejean, Vincent and Iobbi-Nivol, Chantal}, title = {Shewanella decolorationis LDS1 Chromate Resistance}, series = {Applied and environmental microbiology}, volume = {85}, journal = {Applied and environmental microbiology}, number = {18}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.00777-19}, pages = {15}, year = {2019}, abstract = {The genus Shewanella is well known for its genetic diversity, its outstanding respiratory capacity, and its high potential for bioremediation. Here, a novel strain isolated from sediments of the Indian Ocean was characterized. A 16S rRNA analysis indicated that it belongs to the species Shewanella decolorationis. It was named Shewanella decolorationis LDS1. This strain presented an unusual ability to grow efficiently at temperatures from 24 degrees C to 40 degrees C without apparent modifications of its metabolism, as shown by testing respiratory activities or carbon assimilation, and in a wide range of salt concentrations. Moreover, S. decolorationis LDS1 tolerates high chromate concentrations. Indeed, it was able to grow in the presence of 4 mM chromate at 28 degrees C and 3 mM chromate at 40 degrees C. Interestingly, whatever the temperature, when the culture reached the stationary phase, the strain reduced the chromate present in the growth medium. In addition, S. decolorationis LDS1 degrades different toxic dyes, including anthraquinone, triarylmethane, and azo dyes. Thus, compared to Shewanella oneidensis, this strain presented better capacity to cope with various abiotic stresses, particularly at high temperatures. The analysis of genome sequence preliminary data indicated that, in contrast to S. oneidensis and S. decolorationis S12, S. decolorationis LDS1 possesses the phosphorothioate modification machinery that has been described as participating in survival against various abiotic stresses by protecting DNA. We demonstrate that its heterologous production in S. oneidensis allows it to resist higher concentrations of chromate. IMPORTANCE Shewanella species have long been described as interesting microorganisms in regard to their ability to reduce many organic and inorganic compounds, including metals. However, members of the Shewanella genus are often depicted as cold-water microorganisms, although their optimal growth temperature usually ranges from 25 to 28 degrees C under laboratory growth conditions. Shewanella decolorationis LDS1 is highly attractive, since its metabolism allows it to develop efficiently at temperatures from 24 to 40 degrees C, conserving its ability to respire alternative substrates and to reduce toxic compounds such as chromate or toxic dyes. Our results clearly indicate that this novel strain has the potential to be a powerful tool for bioremediation and unveil one of the mechanisms involved in its chromate resistance.}, language = {en} } @misc{ZupokIobbiNivolMejeanetal.2019, author = {Zupok, Arkadiusz and Iobbi-Nivol, Chantal and Mejean, Vincent and Leimk{\"u}hler, Silke}, title = {The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria}, series = {Metallomics : integrated biometal science}, volume = {11}, journal = {Metallomics : integrated biometal science}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c9mt00186g}, pages = {1602 -- 1624}, year = {2019}, abstract = {Bacterial molybdoenzymes are key enzymes involved in the global sulphur, nitrogen and carbon cycles. These enzymes require the insertion of the molybdenum cofactor (Moco) into their active sites and are able to catalyse a large range of redox-reactions. Escherichia coli harbours nineteen different molybdoenzymes that require a tight regulation of their synthesis according to substrate availability, oxygen availability and the cellular concentration of molybdenum and iron. The synthesis and assembly of active molybdoenzymes are regulated at the level of transcription of the structural genes and of translation in addition to the genes involved in Moco biosynthesis. The action of global transcriptional regulators like FNR, NarXL/QP, Fur and ArcA and their roles on the expression of these genes is described in detail. In this review we focus on what is known about the molybdenum- and iron-dependent regulation of molybdoenzyme and Moco biosynthesis genes in the model organism E. coli. The gene regulation in E. coli is compared to two other well studied model organisms Rhodobacter capsulatus and Shewanella oneidensis.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @article{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05645-z}, pages = {12}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @article{KaufmannDuffusMitrovaetal.2018, author = {Kaufmann, Hans Paul and Duffus, Benjamin R. and Mitrova, Biljana and Iobbi-Nivol, Chantal and Teutloff, Christian and Nimtz, Manfred and Jaensch, Lothar and Wollenberger, Ulla and Leimk{\"u}hler, Silke}, title = {Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamie N-Oxide Reductase}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b01108}, pages = {1130 -- 1143}, year = {2018}, abstract = {The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.}, language = {en} } @article{KuecuekgoezeLeimkuehler2018, author = {K{\"u}{\c{c}}{\"u}kg{\"o}ze, G{\"o}khan and Leimk{\"u}hler, Silke}, title = {Direct comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {1}, publisher = {Public Library of Science}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0191819}, pages = {20}, year = {2018}, abstract = {Mammalian aldehyde oxidases (AOXs) are molybdo-flavoenzymes which are present in many tissues in various mammalian species, including humans and rodents. Different species contain a different number of AOX isoforms. In particular, the reasons why mammals other than humans express a multiplicity of tissue-specific AOX enzymes is unknown. In mouse, the isoforms mAOX1, mAOX3, mAOX4 and mAOX2 are present. We previously established a codon-optimized heterologous expression systems for the mAOX1-4 isoforms in Escherichia coli that gives yield to sufficient amounts of active protein for kinetic characterizations and sets the basis in this study for site-directed mutagenesis and structure-function studies. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes on a larger number of substrates has never been performed. Here, thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results show that especially mAOX4 displays a higher substrate selectivity, while no major differences between mAOX1, mAOX2 and mAOX3 were identified. Generally, mAOX1 was the enzyme with the highest catalytic turnover for most substrates. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3.}, language = {en} } @article{MareljaLeimkuehlerMissirlis2018, author = {Marelja, Zvonimir and Leimk{\"u}hler, Silke and Missirlis, Fanis}, title = {Iron sulfur and molybdenum cofactor enzymes regulate the drosophila life cycle by controlling cell metabolism}, series = {Frontiers in physiology}, volume = {9}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00050}, pages = {31}, year = {2018}, abstract = {Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.}, language = {en} } @misc{SpricigoDronovLisdatetal.2009, author = {Spricigo, Roberto and Dronov, Roman and Lisdat, Fred and Leimk{\"u}hler, Silke and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {945}, issn = {1866-8372}, doi = {10.25932/publishup-43117}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431176}, pages = {225 -- 233}, year = {2009}, abstract = {An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8\% and lost 20\% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.}, language = {en} } @misc{RiedelSiemiatkowskaWatanabeetal.2019, author = {Riedel, Simona and Siemiatkowska, Beata and Watanabe, Mutsumi and M{\"u}ller, Christina S. and Sch{\"u}nemann, Volker and Hoefgen, Rainer and Leimk{\"u}hler, Silke}, title = {The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {740}, issn = {1866-8372}, doi = {10.25932/publishup-43497}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434975}, pages = {10}, year = {2019}, abstract = {The mitochondrial ATP-binding cassette (ABC) transporters ABCB7 in humans, Atm1 in yeast and ATM3 in plants, are highly conserved in their overall architecture and particularly in their glutathione binding pocket located within the transmembrane spanning domains. These transporters have attracted interest in the last two decades based on their proposed role in connecting the mitochondrial iron sulfur (Fe-S) cluster assembly with its cytosolic Fe-S cluster assembly (CIA) counterpart. So far, the specific compound that is transported across the membrane remains unknown. In this report we characterized the ABCB7-like transporter Rcc02305 in Rhodobacter capsulatus, which shares 47\% amino acid sequence identity with its mitochondrial counterpart. The constructed interposon mutant strain in R. capsulatus displayed increased levels of intracellular reactive oxygen species without a simultaneous accumulation of the cellular iron levels. The inhibition of endogenous glutathione biosynthesis resulted in an increase of total glutathione levels in the mutant strain. Bioinformatic analysis of the amino acid sequence motifs revealed a potential aminotransferase class-V pyridoxal-50-phosphate (PLP) binding site that overlaps with the Walker A motif within the nucleotide binding domains of the transporter. PLP is a well characterized cofactor of L-cysteine desulfurases like IscS and NFS1 which has a role in the formation of a protein-bound persulfide group within these proteins. We therefore suggest renaming the ABCB7-like transporter Rcc02305 in R. capsulatus to PexA for PLP binding exporter. We further suggest that this ABC-transporter in R. capsulatus is involved in the formation and export of polysulfide species to the periplasm.}, language = {en} } @article{TiedemannIobbiNivolLeimkuehler2022, author = {Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes}, series = {Molecules}, volume = {27}, journal = {Molecules}, edition = {9}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules27092993}, pages = {1 -- 15}, year = {2022}, abstract = {The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.}, language = {en} } @article{GarridoLeimkuehler2021, author = {Garrido, Claudia and Leimk{\"u}hler, Silke}, title = {The inactivation of human aldehyde oxidase 1 by hydrogen peroxide and superoxide}, series = {Drug metabolism and disposition / American Society for Pharmacology and Experimental Therapeutics}, volume = {49}, journal = {Drug metabolism and disposition / American Society for Pharmacology and Experimental Therapeutics}, number = {9}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {1521-009X}, doi = {10.1124/dmd.121.000549}, pages = {729 -- 735}, year = {2021}, abstract = {Mammalian aldehyde oxidases (AOX) are molybdo-flavoenzymes of pharmacological and pathophysiologic relevance that are involved in phase I drug metabolism and, as a product of their enzymatic activity, are also involved in the generation of reactive oxygen species. So far, the physiologic role of aldehyde oxidase 1 in the human body remains unknown. The human enzyme hAOX1 is characterized by a broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into their corresponding carboxylic acids, and hydroxylating various heteroaromatic rings. The enzyme uses oxygen as terminal electron acceptor to produce hydrogen peroxide and superoxide during turnover. Since hAOX1 and, in particular, some natural variants produce not only H2O2 but also high amounts of superoxide, we investigated the effect of both ROS molecules on the enzymatic activity of hAOX1 in more detail. We compared hAOX1 to the high-O-2(.-)-producing natural variant L438V for their time-dependent inactivation with H2O2/O-2(.-) during substrate turnover. We show that the inactivation of the hAOX1 wild-type enzyme is mainly based on the production of hydrogen peroxide, whereas for the variant L438V, both hydrogen peroxide and superoxide contribute to the time-dependent inactivation of the enzyme during turnover. Further, the level of inactivation was revealed to be substrate-dependent: using substrates with higher turnover numbers resulted in a faster inactivation of the enzymes. Analysis of the inactivation site of the enzyme identified a loss of the terminal sulfido ligand at the molybdenum active site by the produced ROS during turnover.}, language = {en} } @article{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/bios4040403}, pages = {403 -- 421}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @misc{McKennaLeimkuehlerHerteretal.2015, author = {McKenna, Shane M. and Leimk{\"u}hler, Silke and Herter, Susanne and Turner, Nicholas J. and Carnell, Andrew J.}, title = {Enzyme cascade reactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102271}, pages = {3271 -- 3275}, year = {2015}, abstract = {A one-pot tandem enzyme reaction using galactose oxidase M3-5 and aldehyde oxidase PaoABC was used to convert hydroxymethylfurfural (HMF) to the pure bioplastics precursor FDCA in 74\% isolated yield. A range of alcohols was also converted to carboxylic acids in high yield under mild conditions.}, language = {en} } @article{NeumannSchulteJuenemannetal.2006, author = {Neumann, Meina and Schulte, Marc and J{\"u}nemann, Nora and St{\"o}cklein, Walter F. M. and Leimk{\"u}hler, Silke}, title = {Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase}, doi = {10.1074/jbc.M601617200}, year = {2006}, abstract = {Rhodobacter capsulatus xanthine dehydrogenase (XDH) is a cytoplasmic enzyme with an (alpha beta) 2 heterodimeric structure that is highly identical to homodimeric eukaryotic xanthine oxidoreductases. The crystal structure revealed that the molybdenum cofactor (Moco) is deeply buried within the protein. A protein involved in Moco insertion and XDH maturation has been identified, which was designated XdhC. XdhC was shown to be essential for the production of active XDH but is not a subunit of the purified enzyme. Here we describe the purification of XdhC and the detailed characterization of its role for XDH maturation. We could show that XdhC binds Moco in stoichiometric amounts, which subsequently can be inserted into Moco-free apo-XDH. A specific interaction between XdhC and XdhB was identified. We show that XdhC is required for the stabilization of the sulfurated form of Moco present in enzymes of the xanthine oxidase family. Our findings imply that enzyme-specific proteins exist for the biogenesis of molybdoenzymes, coordinating Moco binding and insertion into their respective target proteins. So far, the requirement of such proteins for molybdoenzyme maturation has been described only for prokaryotes}, language = {en} } @article{SezerSpricigoUteschetal.2010, author = {Sezer, Murat and Spricigo, Roberto and Utesch, Tillmann and Millo, Diego and Leimk{\"u}hler, Silke and Mroginski, Maria A. and Wollenberger, Ursula and Hildebrandt, Peter and Weidinger, Inez M.}, title = {Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach}, issn = {1463-9076}, doi = {10.1039/B927226g}, year = {2010}, abstract = {Human sulfite oxidase (hSO) was immobilised on SAM-coated silver electrodes under preservation of the native heme pocket structure of the cytochrome b5 (Cyt b5) domain and the functionality of the enzyme. The redox properties and catalytic activity of the entire enzyme were studied by surface enhanced resonance Raman (SERR) spectroscopy and cyclic voltammetry (CV) and compared to the isolated heme domain when possible. It is shown that heterogeneous electron transfer and catalytic activity of hSO sensitively depend on the local environment of the enzyme. Increasing the ionic strength of the buffer solution leads to an increase of the heterogeneous electron transfer rate from 17 s(-1) to 440 s(- 1) for hSO as determined by SERR spectroscopy. CV measurements demonstrate an increase of the apparent turnover rate for the immobilised hSO from 0.85 s(-1) in 100 mM buffer to 5.26 s(-1) in 750 mM buffer. We suggest that both effects originate from the increased mobility of the surface-bound enzyme with increasing ionic strength. In agreement with surface potential calculations we propose that at high ionic strength the enzyme is immobilised via the dimerisation domain to the SAM surface. The flexible loop region connecting the Moco and the Cyt b5 domain allows alternating contact with the Moco interaction site and the SAM surface, thereby promoting the sequential intramolecular and heterogeneous electron transfer from Moco via Cyt b5 to the electrode. At lower ionic strength, the contact time of the Cyt b5 domain with the SAM surface is longer, corresponding to a slower overall electron transfer process.}, language = {en} } @article{ForlaniCeredaFreueretal.2005, author = {Forlani, Fabio and Cereda, Angelo and Freuer, Andrea and Nimtz, Manfred and Leimk{\"u}hler, Silke and Pagani, Silvia}, title = {The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form}, issn = {0014-5793}, year = {2005}, abstract = {After heterologous expression in Escherichia coli, the Azotobacter vinelandii rhodanese RhdA is purified in a persulfurated form (RhdA-SSH). We identified L-cysteine as the most effective sulfur source in producing RhdA-SSH. An E. coli soluble extract was required for in vitro persulfuration of RhdA, and the addition of pyridoxal-5'-phosphate increased RhdA-SSH production, indicating a likely involvement of a cysteine desulfurase. We were able to show the formation of a covalent complex between IscS and RhdA. By combining a time-course fluorescence assay and mass spectrometry analysis, we demonstrated the transfer of sulfur from E. coli IscS to RhdA. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved}, language = {en} } @article{MatthiesNimtzLeimkuehler2005, author = {Matthies, A. and Nimtz, M. and Leimk{\"u}hler, Silke}, title = {Molybdenum cofactor biosynthesis in humans : Identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry}, issn = {0006-2960}, year = {2005}, abstract = {The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C- terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N- terminus of the His(6)-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity}, language = {en} } @article{LeimkuehlerCharcossetLatouretal.2005, author = {Leimk{\"u}hler, Silke and Charcosset, M. and Latour, P. and Dorche, C. and Kleppe, S. and Scaglia, F. and Szymczak, I. and Schupp, P. and Hahnewald, Rita and Reiss, J.}, title = {Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase}, issn = {0340-6717}, year = {2005}, abstract = {Molybdenum cofactor deficiency (MIM\#252150) is a severe autosomal- recessive disorder with a devastating outcome. The cofactor is the product of a complex biosynthetic pathway involving four different genes (MOCS1, MOCS2, MOCS3 and GEPH). This disorder is caused almost exclusively by mutations in the MOCS1 or MOCS2 genes. Mutations affecting this biosynthetic pathway result in a lethal phenotype manifested by progressive neurological damage via the inactivation of the molybdenum cofactor-dependent enzyme, sulphite oxidase. Here we describe a total of ten novel disease-causing mutations in the MOCS1 and MOCS2 genes. Nine out of these ten mutations were classified as pathogenic in nature, since they create a stop codon, affect constitutive splice site positions, or change strictly conserved motifs. The tenth mutation abolishes the stop codon of the MOCS2B gene, thus elongating the corresponding protein. The mutation was expressed in vitro and was found to abolish the binding affinities of the large subunit of molybdopterin synthase (MOCS2B) for both precursor Z and the small subunit of molybdopterin synthase (MOCS2A)}, language = {en} } @misc{SchumannTeraoGarattinietal.2009, author = {Schumann, Silvia and Terao, Mineko and Garattini, Enrico and Saggu, Miguel and Lendzian, Friedhelm and Hildebrandt, Peter and Leimk{\"u}hler, Silke}, title = {Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45030}, year = {2009}, abstract = {Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Eschericia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.}, language = {en} } @inproceedings{DuffusHartmannTeutloffetal.2019, author = {Duffus, Benjamin R. and Hartmann, Tobias and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Refining catalytic insights toward the chemical mechanism of R. capsulatus formate dehydrogenase via EPR spectroscopy}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {257}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2019}, language = {en} } @article{MendelHercherZupoketal.2020, author = {Mendel, Ralf R. and Hercher, Thomas W. and Zupok, Arkadiusz and Hasnat, Muhammad Abrar and Leimk{\"u}hler, Silke}, title = {The requirement of inorganic Fe-S clusters for the biosynthesis of the organometallic molybdenum cofactor}, series = {Inorganics : open access journal}, volume = {8}, journal = {Inorganics : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics8070043}, pages = {23}, year = {2020}, abstract = {Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur froml-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.}, language = {en} } @misc{LemaireInfossiChaoucheetal.2018, author = {Lemaire, Olivier N. and Infossi, Pascale and Chaouche, Amine Ali and Espinosa, Leon and Leimk{\"u}hler, Silke and Giudici-Orticoni, Marie-Th{\´e}r{\`e}se and M{\´e}jean, Vincent and Iobbi-Nivol, Chantal}, title = {Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {933}, issn = {1866-8372}, doi = {10.25932/publishup-45920}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459208}, pages = {15}, year = {2018}, abstract = {In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4: 4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.}, language = {en} } @misc{LeimkuehlerBuehningBeilschmidt2017, author = {Leimk{\"u}hler, Silke and B{\"u}hning, Martin and Beilschmidt, Lena}, title = {Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1015}, issn = {1866-8372}, doi = {10.25932/publishup-47501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475011}, pages = {22}, year = {2017}, abstract = {Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.}, language = {en} } @misc{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1082}, issn = {1866-8372}, doi = {10.25932/publishup-47507}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475070}, pages = {21}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @misc{MareljaLeimkuehlerMissirlis2018, author = {Marelja, Zvonimir and Leimk{\"u}hler, Silke and Missirlis, Fanis}, title = {Iron sulfur and molybdenum cofactor enzymes regulate the Drosophila life cycle by controlling cell metabolism}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {925}, issn = {1866-8372}, doi = {10.25932/publishup-44567}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445670}, pages = {33}, year = {2018}, abstract = {Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.}, language = {en} } @article{NeukranzKotterBeilschmidtetal.2019, author = {Neukranz, Yannika and Kotter, Annika and Beilschmidt, Lena and Marelja, Zvonimir and Helm, Mark and Graf, Ralph and Leimk{\"u}hler, Silke}, title = {Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.8b01160}, pages = {1786 -- 1798}, year = {2019}, abstract = {The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the L-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm(5)s(2) U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 knockout in HEK293T cells using the CRISPR/Cas9 system. The effects caused by the absence of MOCS3 were analyzed in detail. We show that sulfite oxidase activity was almost completely abolished, on the basis of the absence of Moco in these cells. In addition, mcm(5)s(2)U thio-modified tRNAs were not detectable. Because the L-cysteine desulfurase NFS1 was shown to act as a sulfur donor for MOCS3 in the cytosol, we additionally investigated the impact of a MOCS3 knockout on the cellular localization of NFS1. By different methods, we identified a MOCS3-independent novel localization of NFS1 at the centrosome.}, language = {en} } @misc{LeimkuehlerBuehningBeilschmidt2017, author = {Leimk{\"u}hler, Silke and B{\"u}hning, Martin and Beilschmidt, Lena}, title = {Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes}, series = {Biomolecules}, volume = {7}, journal = {Biomolecules}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom7010005}, pages = {20}, year = {2017}, abstract = {Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.}, language = {en} } @article{ReschkeMebsSigfridssonClaussetal.2017, author = {Reschke, Stefan and Mebs, Stefan and Sigfridsson-Clauss, Kajsa G. V. and Kositzki, Ramona and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy}, series = {Inorganic chemistry}, volume = {56}, journal = {Inorganic chemistry}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.6b02846}, pages = {2165 -- 2176}, year = {2017}, abstract = {Enzymes of the xanthine oxidase family are among the best characterized mononuclear molybdenum enzymes. Open questions about their mechanism of transfer of an oxygen atom to the substrate remain. The enzymes share a molybdenum cofactor (Moco) with the metal ion binding a molybdopterin (MPT) molecule via its dithiolene function and terminal sulfur and oxygen groups. For xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus, we used X-ray absorption spectroscopy to determine the Mo site structure, its changes in a pH range of 5-10, and the influence of amino acids (Glu730 and Gln179) close to Moco in wild-type (WT), Q179A, and E730A variants, complemented by enzyme kinetics and quantum chemical studies. Oxidized WT and Q179A revealed a similar Mo (VI) ion with each one MPT, Mo=O, Mo-O-, and Mo=S ligand, and a weak Mo-O(E730) bond at alkaline pH. Protonation of an oxo to a hydroxo (OH) ligand (pK similar to 6.8) causes inhibition of XDH at acidic pH, whereas deprotonated xanthine (pK similar to 8.8) is an inhibitor at alkaline pH. A similar acidic pK for the WT and Q179A. variants, as well as the metrical parameters of the Mo site and density functional theory calculations, suggested protonation at the equatorial oxo group. The sulfido was replaced with an oxo ligand in the inactive E730A variant, further showing another oxo and one Mo OH ligand at Mo, which are independent of pH. Our findings suggest a reaction mechanism for XDH in which an initial oxo rather than a hydroxo group and the sulfido ligand are essential for xanthine oxidation.}, language = {en} } @article{OenerQuerebilloDavidetal.2018, author = {{\"O}ner, Ibrahim Halil and Querebillo, Christine Joy and David, Christin and Gernert, Ulrich and Walter, Carsten and Driess, Matthias and Leimk{\"u}hler, Silke and Ly, Khoa Hoang and Weidinger, Inez M.}, title = {High electromagnetic field enhancement of TiO2 nanotube electrodes}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201802597}, pages = {7225 -- 7229}, year = {2018}, abstract = {We present the fabrication of TiO2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochromeb(5) were observed upon covalent immobilization of the protein matrix on the TiO2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 degrees C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode.}, language = {en} } @article{KaufmannDuffusTeutloffetal.2018, author = {Kaufmann, Paul and Duffus, Benjamin R. and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.8b00128}, pages = {2889 -- 2901}, year = {2018}, abstract = {The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H-2 to protons and electrons. Despite the close to atomic resolution structure (1.1 angstrom), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H-2 oxidation of Mo/Cu-dependent CODHs in the future.}, language = {en} } @misc{MotaCoelhoLeimkuehleretal.2018, author = {Mota, Cristiano and Coelho, Catarina and Leimk{\"u}hler, Silke and Garattini, Enrico and Terao, Mineko and Santos-Silva, Teresa and Romao, Maria Joao}, title = {Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics}, series = {Coordination chemistry reviews}, volume = {368}, journal = {Coordination chemistry reviews}, publisher = {Elsevier}, address = {Lausanne}, issn = {0010-8545}, doi = {10.1016/j.ccr.2018.04.006}, pages = {35 -- 59}, year = {2018}, abstract = {Aldehyde oxidases are molybdenum and flavin dependent enzymes characterized by a very wide substrate specificity and performing diverse reactions that include oxidations (e.g., aldehydes and azaheterocycles), hydrolysis of amide bonds, and reductions (e.g., nitro, S-oxides and N-oxides). Oxidation reactions and amide hydrolysis occur at the molybdenum site while the reductions are proposed to occur at the flavin site. AOX activity affects the metabolism of different drugs and xenobiotics, some of which designed to resist other liver metabolizing enzymes (e.g., cytochrome P450 monooxygenase isoenzymes), raising its importance in drug development. This work consists of a comprehensive overview on aldehyde oxidases, concerning the genetic evolution of AOX, its diversity among the human population, the crystal structures available, the known catalytic reactions and the consequences in pre-clinical pharmacokinetic and pharmacodynamic studies. Analysis of the different animal models generally used for pre-clinical trials and comparison between the human (hAOX1), mouse homologs as well as the related xanthine oxidase (XOR) are extensively considered. The data reviewed also include a systematic analysis of representative classes of molecules that are hAOX1 substrates as well as of typical and well characterized hAOX1 inhibitors. The considerations made on the basis of a structural and functional analysis are correlated with reported kinetic and metabolic data for typical classes of drugs, searching for potential structural determinants that may dictate substrate and/or inhibitor specificities.}, language = {en} } @article{TangWerchmeisterPredaetal.2019, author = {Tang, Jing and Werchmeister, Rebecka Maria Larsen and Preda, Loredana and Huang, Wei and Zheng, Zhiyong and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Xiao, Xinxin and Engelbrekt, Christian and Ulstrup, Jens and Zhang, Jingdong}, title = {Three-dimensional sulfite oxidase bioanodes based on graphene functionalized carbon paper for sulfite/O-2 biofuel cells}, series = {ACS catalysis}, volume = {9}, journal = {ACS catalysis}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.9b01715}, pages = {6543 -- 6554}, year = {2019}, abstract = {We have developed a three-dimensional (3D) graphene electrode suitable for the immobilization of human sulfite oxidase (hSO), which catalyzes the electrochemical oxidation of sulfite via direct electron transfer (DET). The electrode is fabricated by drop-casting graphene-polyethylenimine (G-P) composites on carbon papers (CPs) precoated with graphene oxide (GO). The negatively charged hSO can be adsorbed electrostatically on the positively charged matrix (G-P) on CP electrodes coated with GO (CPG), with a proper orientation for accelerated DET. Notably, further electrochemical reduction of G-P on CPG electrodes leads to a 9-fold increase of the saturation catalytic current density (j(m)) for sulfite oxidation reaching 24.4 +/- 0.3 mu A to cm(-2), the highest value among reported DET-based hSO bioelectrodes. The increased electron transfer rate plays a dominating role in the enhancement of direct enzymatic current because of the improved electric contact of hSO with the electrode, The optimized hSO bioelectrode shows a significant catalytic rate (k(cat): 25.6 +/- 0.3 s(-1)) and efficiency (k(cat)/K-m: 0.231 +/- 0.003 s(-1) mu M-1) compared to the reported hSO bioelectrodes. The assembly of the hSO bioanode and a commercial platinum biocathode allows the construction of sulfite/O-2 enzymatic biofuel cells (EBFCs) with flowing fuels. The optimized EBFC displays an open-circuit voltage (OCV) of 0.64 +/- 0.01 V and a maximum power density of 61 +/- 6 mu W cm(-2) (122 +/- 12 mW m(-3)) at 30 degrees C, which exceeds the best reported value by more than 6 times.}, language = {en} } @article{ReschkeDuffusSchrapersetal.2019, author = {Reschke, Stefan and Duffus, Benjamin R. and Schrapers, Peer and Mebs, Stefan and Teutloff, Christian and Dau, Holger and Haumann, Michael and Leimk{\"u}hler, Silke}, title = {Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.9b00078}, pages = {2228 -- 2242}, year = {2019}, abstract = {The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.}, language = {en} } @misc{MogaRobinsonLeimkuehler2019, author = {Moga, A. and Robinson, T. and Leimk{\"u}hler, Silke}, title = {Towards reconstituting a biosynthetic pathway within compartmentalized GUVs}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {48}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S218 -- S218}, year = {2019}, language = {en} } @article{BuehningVallerianiLeimkuehler2017, author = {B{\"u}hning, Martin and Valleriani, Angelo and Leimk{\"u}hler, Silke}, title = {The role of SufS is restricted to Fe-S cluster biosynthesis in escherichia coli}, series = {Biochemistry}, volume = {56}, journal = {Biochemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b00040}, pages = {1987 -- 2000}, year = {2017}, abstract = {In Escherichia coli, two different systems that are important for the coordinate formation of Fe-S clusters have been identified, namely, the ISC and SUF systems. The ISC system is the housekeeping Fe-S machinery, which provides Fe-S clusters for numerous cellular proteins. The IscS protein of this system was additionally revealed to be the primary sulfur donor for several sulfur-containing molecules with important biological functions, among which are the molybdenum cofactor (Moco) and thiolated nucleosides in tRNA. Here, we show that deletion of central components of the ISC system in addition to IscS leads to an overall decrease in Fe-S cluster enzyme and molybdoenzyme activity in addition to a decrease in the number of Fe-S-dependent thiomodifications of tRNA, based on the fact that some proteins involved in Moco biosynthesis and tRNA thiolation are Fe-S-dependent. Complementation of the ISC deficient strains with the suf operon restored the activity of Fe-S-containing proteins, including the MoaA protein, which is involved in the conversion of 5′GTP to cyclic pyranopterin monophosphate in the fist step of Moco biosynthesis. While both systems share a high degree of similarity, we show that the function of their respective l-cysteine desulfurase IscS or SufS is specific for each cellular pathway. It is revealed that SufS cannot play the role of IscS in sulfur transfer for the formation of 2-thiouridine, 4-thiouridine, or the dithiolene group of molybdopterin, being unable to interact with TusA or ThiI. The results demonstrate that the role of the SUF system is exclusively restricted to Fe-S cluster assembly in the cell.}, language = {en} } @article{ParagasHumphreysMinetal.2017, author = {Paragas, Erickson M. and Humphreys, Sara C. and Min, Joshua and Joswig-Jones, Carolyn A. and Leimk{\"u}hler, Silke and Jones, Jeffrey P.}, title = {ecoAO}, series = {ACS OMEGA}, volume = {2}, journal = {ACS OMEGA}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.7b01054}, pages = {4820 -- 4827}, year = {2017}, abstract = {Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO's preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4-trans-(N,N-dimethylamino)cinnamaldehyde, O6-benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of kcat and V/K, which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development.}, language = {en} } @article{FriemelMareljaLietal.2017, author = {Friemel, Martin and Marelja, Zvonimir and Li, Kuanyu and Leimk{\"u}hler, Silke}, title = {The N-Terminus of Iron-Sulfur Cluster Assembly Factor ISD11 Is Crucial for Subcellular Targeting and Interaction with L-Cysteine Desulfurase NFS1}, series = {Biochemistry}, volume = {56}, journal = {Biochemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.6b01239}, pages = {1797 -- 1808}, year = {2017}, abstract = {Assembly of iron sulfur (FeS) clusters is an important process in living cells. The initial sulfur mobilization step for FeS cluster biosynthesis is catalyzed by L-cysteine desulfurase NFS1, a reaction that is localized in mitochondria in humans. In humans, the function of NFS1 depends on the ISD11 protein, which is required to stabilize its structure. The NFS1/ISD11 complex further interacts with scaffold protein ISCU and regulator protein frataxin, thereby forming a quaternary complex for FeS cluster formation. It has been suggested that the role of ISD11 is not restricted to its role in stabilizing the structure of NFS1, because studies of single-amino acid variants of ISD11 additionally demonstrated its importance for the correct assembly of the quaternary complex. In this study, we are focusing on the N-terminal region of ISD11 to determine the role of N-terminal amino acids in the formation of the complex with NFS1 and to reveal the mitochondria) targeting sequence for subcellular localization. Our in vitro studies with the purified proteins and in vivo studies in a cellular system show that the first 10 N-terminal amino acids of ISD11 are indispensable for the activity of NFS1 and especially the conserved "LYR" motif is essential for the role of ISD11 in forming a stable and active complex with NFS1.}, language = {en} } @article{BurschelDecovicNuberetal.2018, author = {Burschel, Sabrina and Decovic, Doris Kreuzer and Nuber, Franziska and Stiller, Marie and Hofmann, Maud and Zupok, Arkadiusz and Siemiatkowska, Beata and Gorka, Michal Jakub and Leimk{\"u}hler, Silke and Friedrich, Thorsten}, title = {Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli NADH}, series = {Molecular microbiology}, volume = {111}, journal = {Molecular microbiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-382X}, doi = {10.1111/mmi.14137}, pages = {31 -- 45}, year = {2018}, abstract = {The NADH:ubiquinone oxidoreductase (respiratory complex I) is the main entry point for electrons into the Escherichia coli aerobic respiratory chain. With its sophisticated setup of 13 different subunits and 10 cofactors, it is anticipated that various chaperones are needed for its proper maturation. However, very little is known about the assembly of E. coli complex I, especially concerning the incorporation of the iron-sulfur clusters. To identify iron-sulfur cluster carrier proteins possibly involved in the process, we generated knockout strains of NfuA, BolA, YajL, Mrp, GrxD and IbaG that have been reported either to be involved in the maturation of mitochondrial complex I or to exert influence on the clusters of bacterial complex. We determined the NADH and succinate oxidase activities of membranes from the mutant strains to monitor the specificity of the individual mutations for complex I. The deletion of NfuA, BolA and Mrp led to a decreased stability and partially disturbed assembly of the complex as determined by sucrose gradient centrifugation and native PAGE. EPR spectroscopy of cytoplasmic membranes revealed that the BolA deletion results in the loss of the binuclear Fe/S cluster N1b.}, language = {en} } @article{MotaEsmaeeliMoghaddamTabalvandaniCoelhoetal.2019, author = {Mota, Cristiano and Esmaeeli Moghaddam Tabalvandani, Mariam and Coelho, Catarina and Santos-Silva, Teresa and Wolff, Martin and Foti, Alessandro and Leimk{\"u}hler, Silke and Romao, Maria Joao}, title = {Human aldehyde oxidase (hAOX1)}, series = {FEBS Open Bio}, volume = {9}, journal = {FEBS Open Bio}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {2211-5463}, doi = {10.1002/2211-5463.12617}, pages = {925 -- 934}, year = {2019}, abstract = {Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 degrees C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. EnzymesAldehyde oxidase (); xanthine dehydrogenase (); xanthine oxidase (). DatabasesStructural data are available in the Protein Data Bank under the accession number .}, language = {en} } @article{LemaireInfossiChaoucheetal.2018, author = {Lemaire, Olivier N. and Infossi, Pascale and Chaouche, Amine Ali and Espinosa, Leon and Leimk{\"u}hler, Silke and Giudici-Orticoni, Marie-Therese and Mejean, Vincent and Iobbi-Nivol, Chantal}, title = {Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-31851-2}, pages = {13}, year = {2018}, abstract = {In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4: 4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.}, language = {en} } @article{LeimkuehlerMendel2017, author = {Leimk{\"u}hler, Silke and Mendel, Ralf-Rainer}, title = {Molybdenum Cofactor Biosynthesis}, series = {Molybdenum and tungsten enzymes: biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes: biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915}, pages = {100 -- 116}, year = {2017}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes with the exception of nitrogenase, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into three steps in eukaryotes, and four steps in bacteria and archaea: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′GTP, (ii) in the second step the two sulfur molecules are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into molybdopterin to form Moco and (iv) additional modification of Moco occurs in bacteria and archaea with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review will focus on the biosynthesis of Moco in bacteria, humans and plants.}, language = {en} } @article{NishinoOkamotoLeimkuehler2017, author = {Nishino, Takeshi and Okamoto, Ken and Leimk{\"u}hler, Silke}, title = {Enzymes of the Xanthine Oxidase Family}, series = {Molybdenum and tungsten enzymes : biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes : biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915-00192}, pages = {192 -- 239}, year = {2017}, abstract = {Enzymes from the xanthine oxidase (XO) family of molybdenum enzymes are generally, with some exceptions, molybdenum iron-sulfur flavin hydroxylases. Mammalian xanthine oxidoreductase and aldehyde oxidase were among the first enzymes to be studied in detail more than 100 years ago and, surprisingly, they continue to be thoroughly studied in molecular detail with many open and unresolved questions remaining. Enzymes of the XO family are characterized by a molybdenum cofactor (Moco) active site with a MoVIOS(OH) ligand sphere where substrate hydroxylation of either aromatic or aliphatic carbon centers is catalyzed. During the reaction, electrons are transferred to the oxidizing substrate, most commonly O2 or NAD+, which react at the FAD site.}, language = {en} } @article{LeimkuehlerLemaireIobbiNivol2017, author = {Leimk{\"u}hler, Silke and Lemaire, Olivier N. and Iobbi-Nivol, Chantal}, title = {Bacterial Molybdoenzymes}, series = {Molybdenum and tungsten enzymes : biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes : biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915-00117}, pages = {117 -- 142}, year = {2017}, abstract = {The biogenesis of molybdoenzymes is a cytoplasmic event requiring both the folded apoenzymes and the matured molybdenum cofactor. The structure and the complexity of the molybdenum cofactor varies in each molybdoenzyme family and consequently different accessory proteins are required for the maturation of the respective enzymes. Thus, for enzymes of both the DMSO reductase and xanthine oxidase families, specific chaperones exist which are dedicated to increase the stability and the folding of specific members of each family. In this review, we describe the role of these chaperones for molybdoenzyme maturation. We present a model which describes step by step the mechanism of the maturation of representative molybdoenzymes from each family.}, language = {en} } @article{FrascaRojasSalewskietal.2012, author = {Frasca, Stefano and Rojas, Oscar and Salewski, Johannes and Neumann, Bettina and Stiba, Konstanze and Weidinger, Inez M. and Tiersch, Brigitte and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {87}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2011.11.012}, pages = {33 -- 41}, year = {2012}, abstract = {The present study reports a facile approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase (hSO) immobilized on a gold nanoparticles modified electrode. The spherical core shell AuNPs were prepared via a new method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquids resulting particles with a diameter less than 10 nm. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode where then hSO was adsorbed and an enhanced interfacial electron transfer and electrocatalysis was achieved. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s, a linear detection range between 0.5 and 5.4 mu M with a high sensitivity (1.85 nA mu M-1). The investigated system provides remarkable advantages in the possibility to work at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples.}, language = {en} } @misc{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {975}, issn = {1866-8372}, doi = {10.25932/publishup-42620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426205}, pages = {14}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @article{DuffusSchrapersSchuthetal.2020, author = {Duffus, Benjamin R. and Schrapers, Peer and Schuth, Nils and Mebs, Stefan and Dau, Holger and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {Anion binding and oxidative modification at the molybdenum cofactor of formate dehydrogenase from Rhodobacter capsulatus studied by X-ray absorption spectroscopy}, series = {Inorganic chemistry}, volume = {59}, journal = {Inorganic chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.9b01613}, pages = {214 -- 225}, year = {2020}, abstract = {Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O-2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo=S) and oxo (Mo=O) bonds, were observed in the presence of azide (N-3(-)) or cyanate (OCN-). Azide provided best protection against O-2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes.}, language = {en} } @article{Leimkuehler2021, author = {Leimk{\"u}hler, Silke}, title = {Transition metals in catalysis}, series = {Inorganics : open access journal}, volume = {9}, journal = {Inorganics : open access journal}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics9010006}, pages = {2}, year = {2021}, language = {en} } @article{SpricigoRichterLeimkuehleretal.2010, author = {Spricigo, Roberto and Richter, Claudia and Leimk{\"u}hler, Silke and Gorton, Lo and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Sulfite biosensor based on osmium redox polymer wired sulfite oxidase}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2009.09.001}, year = {2010}, abstract = {A biosensor, based on a redoxactive osmium polymer and sulfite oxidase on screen-printed electrodes, is presented here as a promising method for the detection of sulfite. A catalytic oxidative current was generated when a sample containing sulfite was pumped over the carbon screen-printed electrode modified with osmium redox polymer wired sulfite oxidase. A stationary value was reached after approximately 50 s and a complete measurement lasted no more than 3 min. The electrode polarized at -0.1 V (vs. Ag vertical bar AgCl 1M KCl) permits minimizing the influence of interfering substances, since these compounds can be unspecific oxidized at higher potentials. Because of the good stability of the protein film on the electrode surface, a well functioning biosensor-flow system was possible to construct. The working stability and reproducibility were further enhanced by the addition of bovine serum albumin generating a more long-term stable and biocompatible protein environment. The optimized biosensor showed a stable signal for more than a week of operation and a coefficient of variation of 4.8\% for 12 successive measurements. The lower limit of detection of the sensor was 0.5 mu M sulfite and the response was linear until 100 mu M. The high sensitivity permitted a 1:500 dilution of wine samples. The immobilization procedure and the operational conditions granted minimized interferences. Additionally, repeating the immobilization procedure to form several layers of wired SO further increased the sensitivity of such a sensor. Finally. the applicability of the developed sulfite biosensor was tested on real samples, such as white and red wines.}, language = {en} } @article{NeumannMittelstaedtIobbiNivoletal.2009, author = {Neumann, Meina and Mittelstaedt, Gerd and Iobbi-Nivol, Chantal and Saggu, Miguel and Lendzian, Friedhelm and Hildebrandt, Peter and Leimk{\"u}hler, Silke}, title = {A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli}, issn = {1742-464X}, doi = {10.1111/j.1742-4658.2009.07000.x}, year = {2009}, abstract = {Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.}, language = {en} } @article{NeumannMittelstaedtSeduketal.2009, author = {Neumann, Meina and Mittelstaedt, Gerd and Seduk, Farida and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli}, issn = {0021-9258}, doi = {10.1074/jbc.M109.008565}, year = {2009}, abstract = {We have purified and characterized a specific CTP: molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22\% amino acid sequence identity to E. coli MobA, the specific GTP: molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase Yag-TSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37 +/- 0.01 min(-1) was obtained. A1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23 +/- 0.02 mu M for CTP and 1.17 +/- 0.18 mu M for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.}, language = {en} } @article{MahroBrasCerqueiraetal.2013, author = {Mahro, Martin and Bras, Natercia F. and Cerqueira, Nuno M. F. S. A. and Teutloff, Christian and Coelho, Catarina and Romao, Maria Joao and Leimk{\"u}hler, Silke}, title = {Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0082285}, pages = {12}, year = {2013}, abstract = {In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.}, language = {en} } @article{DietzelKuperDoebbleretal.2009, author = {Dietzel, Uwe and Kuper, Jochen and Doebbler, Jennifer A. and Schulte, Antje and Truglio, James J. and Leimk{\"u}hler, Silke and Kisker, Caroline}, title = {Mechanism of substrate and inhibitor binding of Rhodobacter capsulatus xanthine dehydrogenase}, issn = {0021-9258}, doi = {10.1074/jbc.M808114200}, year = {2009}, abstract = {Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (alpha beta)(2) heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6- aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (E(B)232Q) to prevent substrate turnover. The hypoxanthine-and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue GluB-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward Arg(B)-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a K-i of 103.57 +/- 18.96 nM for pterin-6-aldehyde.}, language = {en} } @article{MareljaChowdhuryDoscheetal.2013, author = {Marelja, Zvonimir and Chowdhury, Mita Mullick and Dosche, Carsten and Hille, Carsten and Baumann, Otto and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Leimk{\"u}hler, Silke}, title = {The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0060869}, pages = {13}, year = {2013}, abstract = {In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Forster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.}, language = {en} } @article{GisinMuellerPfaenderetal.2010, author = {Gisin, Jonathan and Mueller, Alexandra and Pfaender, Yvonne and Leimk{\"u}hler, Silke and Narberhaus, Franz and Masepohl, Bernd}, title = {A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions}, issn = {0021-9193}, doi = {10.1128/Jb.00742-10}, year = {2010}, abstract = {Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.}, language = {en} } @article{SivanesanLyAdamkiewiczetal.2013, author = {Sivanesan, Arumugam and Ly, Khoa H. and Adamkiewicz, Witold and Stiba, Konstanze and Leimk{\"u}hler, Silke and Weidinger, Inez M.}, title = {Tunable electric field enhancement and redox chemistry on TiO2 Island films via covalent attachment to Ag or Au nanostructures}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {117}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp4032578}, pages = {11866 -- 11872}, year = {2013}, abstract = {Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b(5) (Cyt b(5)) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b(5) were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s(-1)) of Cyt b(5) to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film.}, language = {en} } @article{WiethausMuellerNeumannetal.2009, author = {Wiethaus, Jessica and Mueller, Alexandra and Neumann, Meina and Neumann, Sandra and Leimk{\"u}hler, Silke and Narberhaus, Franz and Masepohl, Bernd}, title = {Specific interactions between four Molybdenum-binding proteins contribute to Mo-dependent gene regulation in Rhodobacter capsulatus}, issn = {0021-9193}, doi = {10.1128/Jb.00526-09}, year = {2009}, abstract = {The phototrophic purple bacterium Rhodobacter capsulatus encodes two transcriptional regulators, MopA and MopB, with partially overlapping and specific functions in molybdate-dependent gene regulation. Both MopA and MopB consist of an N-terminal DNA-binding helix-turn-helix domain and a C-terminal molybdate-binding di-MOP domain. They formed homodimers as apo-proteins and in the molybdate-bound state as shown by yeast two-hybrid (Y2H) studies, glutaraldehyde cross-linking, gel filtration chromatography, and copurification experiments. Y2H studies suggested that both the DNA- binding and the molybdate-binding domains contribute to dimer formation. Analysis of molybdate binding to MopA and MopB revealed a binding stoichiometry of four molybdate oxyanions per homodimer. Specific interaction partners of MopA and MopB were the molybdate transporter ATPase ModC and the molbindin-like Mop protein, respectively. Like other molbindins, the R. capsulatus Mop protein formed hexamers, which were stabilized by binding of six molybdate oxyanions per hexamer. Heteromer formation of MopA and MopB was shown by Y2H studies and copurification experiments. Reporter gene activity of a strictly MopA-dependent mop-lacZ fusion in mutant strains defective for either mopA, mopB, or both suggested that MopB negatively modulates expression of the mop promoter. We propose that depletion of the active MopA homodimer pool by formation of MopA-MopB heteromers might represent a fine-tuning mechanism controlling mop gene expression.}, language = {en} } @article{SpricigoDronovLisdatetal.2009, author = {Spricigo, Roberto and Dronov, Roman and Lisdat, Fred and Leimk{\"u}hler, Silke and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer}, issn = {1618-2642}, doi = {10.1007/s00216-008-2432-y}, year = {2009}, abstract = {An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8\% and lost 20\% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.}, language = {en} } @article{WarelowOkeSchoeppCothenetetal.2013, author = {Warelow, Thomas P. and Oke, Muse and Schoepp-Cothenet, Barbara and Dahl, Jan U. and Bruselat, Nicole and Sivalingam, Ganesh N. and Leimk{\"u}hler, Silke and Thalassinos, Konstantinos and Kappler, Ulrike and Naismith, James H. and Santini, Joanne M.}, title = {The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {8}, publisher = {PUBLIC LIBRARY SCIENCE}, address = {SAN FRANCISCO}, issn = {1932-6203}, doi = {10.1371/journal.pone.0072535}, pages = {10}, year = {2013}, abstract = {The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large alpha subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small beta subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc(1) complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc(1) complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.}, language = {en} } @article{HaenzelmannDahlKuperetal.2009, author = {Haenzelmann, Petra and Dahl, Jan U. and Kuper, Jochen and Urban, Alexander and Mueller-Theissen, Ursula and Leimk{\"u}hler, Silke and Schindelin, Hermann}, title = {Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains}, issn = {0961-8368}, doi = {10.1002/pro.260}, year = {2009}, abstract = {Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple-domain rhodanese-like protein, namely YnjE from Escherichia coli, in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well- characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N-terminal inactive rhodanese-like domain. Phylogenetic analysis reveals that YnjE triple-domain homologs can be found in a variety of other gamma-proteobacteria, in addition, some single-, tandem-, four and even six-domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3- mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C-terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.}, language = {en} } @article{ReschkeSigfridssonKaufmannetal.2013, author = {Reschke, Stefan and Sigfridsson, Kajsa G. V. and Kaufmann, Paul and Leidel, Nils and Horn, Sebastian and Gast, Klaus and Schulzke, Carola and Haumann, Michael and Leimk{\"u}hler, Silke}, title = {Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in escherichia coli}, series = {The journal of biological chemistry}, volume = {288}, journal = {The journal of biological chemistry}, number = {41}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M113.497453}, pages = {29736 -- 29745}, year = {2013}, abstract = {The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo-S and Mo-O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme.}, language = {en} } @article{ReschkeNiksWilsonetal.2013, author = {Reschke, Stefan and Niks, Dimitri and Wilson, Heather and Sigfridsson, Kajsa G. V. and Haumann, Michael and Rajagopalan, K. V. and Hine, Russ and Leimk{\"u}hler, Silke}, title = {Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase}, series = {Biochemistry}, volume = {52}, journal = {Biochemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/bi4008512}, pages = {8295 -- 8303}, year = {2013}, abstract = {Sulfite oxidase (SO) is an essential molybdoenzyme for humans, catalyzing the final step in the degradation of sulfur-containing amino acids and lipids, which is the oxidation of sulfite to sulfate. The catalytic site of SO consists of a molybdenum ion bound to the dithiolene sulfurs of one molybdopterin (MPT) molecule, carrying two oxygen ligands, and is further coordinated by the thiol sulfur of a conserved cysteine residue. We have exchanged four non-active site cysteines in the molybdenum cofactor (Moco) binding domain of human SO (SOMD) with serine using site-directed mutagenesis. This facilitated the specific replacement of the active site Cys207 with selenocysteine during protein expression in Escherichia coli. The sulfite oxidizing activity (k(cat)/K-M) of SeSOMD4Ser was increased at least 1.5-fold, and the pH optimum was shifted to a more acidic value compared to those of SOMD4Ser and SOMD4Cys(wt) X-ray absorption spectroscopy revealed a Mow Se bond length of 2.51 A, likely caused by the specific binding of Sec207 to the molybdenum, and otherwise rather similar square-pyramidal S/Se(Cys)(O2MoS2)-S-VI(MPT) site structures in the three constructs. The low-pH form of the Mo(V) electron paramagnetic resonance (EPR) signal of SeSOM4Ser was altered compared to those of SOMD4Ser and SOMD4cy,(,), with g, in particular shifted to a lower magnetic field, due to the Se ligation at the molybdenum. In contrast, the Mo(V) EPR signal of the high-pH form was unchanged. The substantially stronger effect of substituting selenocysteine for cysteine at low pH as compared to high pH is most likely due to the decreased covalency of the Mo Se bond.}, language = {en} } @article{FrascaMilanGuietetal.2013, author = {Frasca, Stefano and Milan, Anabel Molero and Guiet, Amandine and Goebel, Caren and Perez-Caballero, Fernando and Stiba, Konstanze and Leimk{\"u}hler, Silke and Fischer, Anna and Wollenberger, Ursula}, title = {Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes-Electrochemical characterization and direct enzyme communication}, series = {ELECTROCHIMICA ACTA}, volume = {110}, journal = {ELECTROCHIMICA ACTA}, number = {2}, publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, address = {OXFORD}, issn = {0013-4686}, doi = {10.1016/j.electacta.2013.03.144}, pages = {172 -- 180}, year = {2013}, abstract = {In this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appears as a promising conductive platform for the immobilization of complex enzymes and their application in bioelectrocatalysis. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HartmannLeimkuehler2013, author = {Hartmann, Tobias and Leimk{\"u}hler, Silke}, title = {The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate}, series = {The FEBS journal}, volume = {280}, journal = {The FEBS journal}, number = {23}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1742-464X}, doi = {10.1111/febs.12528}, pages = {6083 -- 6096}, year = {2013}, abstract = {The formate dehydrogenase from Rhodobactercapsulatus (RcFDH) is an oxygen-tolerant protein with an ()(2) subunit composition that is localized in the cytoplasm. It belongs to the group of metal and NAD(+)-dependent FDHs with the coordination of a molybdenum cofactor, four [Fe4S4] clusters and one [Fe2S2] cluster associated with the -subunit, one [Fe4S4] cluster and one FMN bound to the -subunit, and one [Fe2S2] cluster bound to the -subunit. RcFDH was heterologously expressed in Escherichiacoli and characterized. Cofactor analysis showed that the bis-molybdopterin guanine dinucleotide cofactor is bound to the FdsA subunit containing a cysteine ligand at the active site. A turnover rate of 2189min(-1) with formate as substrate was determined. The back reaction for the reduction of CO2 was catalyzed with a k(cat) of 89min(-1). The preference for formate oxidation shows an energy barrier for CO2 reduction of the enzyme. Furthermore, the FMN-containing and [Fe4S4]-containing -subunit together with the [Fe2S2]-containing -subunit forms a diaphorase unit with activities for both NAD(+) reduction and NADH oxidation. In addition to the structural genes fdsG, fdsB, and fdsA, the fds operon in R.capsulatus contains the fdsC and fdsD genes. Expression studies showed that RcFDH is only active when both FdsC and FdsD are present. Both proteins are proposed to be involved in bis-molybdopterin guanine dinucleotide modification and insertion into RcFDH.}, language = {en} } @article{LimFriemelMarumetal.2013, author = {Lim, Sze Chern and Friemel, Martin and Marum, Justine E. and Tucker, Elena J. and Bruno, Damien L. and Riley, Lisa G. and Christodoulou, John and Kirk, Edwin P. and Boneh, Avihu and DeGennaro, Christine M. and Springer, Michael and Mootha, Vamsi K. and Rouault, Tracey A. and Leimk{\"u}hler, Silke and Thorburn, David R. and Compton, Alison G.}, title = {Mutations in LYRM4, encoding ironsulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes}, series = {Human molecular genetics}, volume = {22}, journal = {Human molecular genetics}, number = {22}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0964-6906}, doi = {10.1093/hmg/ddt295}, pages = {4460 -- 4473}, year = {2013}, abstract = {Ironsulfur clusters (ISCs) are important prosthetic groups that define the functions of many proteins. Proteins with ISCs (called ironsulfur or FeS proteins) are present in mitochondria, the cytosol, the endoplasmic reticulum and the nucleus. They participate in various biological pathways including oxidative phosphorylation (OXPHOS), the citric acid cycle, iron homeostasis, heme biosynthesis and DNA repair. Here, we report a homozygous mutation in LYRM4 in two patients with combined OXPHOS deficiency. LYRM4 encodes the ISD11 protein, which forms a complex with, and stabilizes, the sulfur donor NFS1. The homozygous mutation (c.203GT, p.R68L) was identified via massively parallel sequencing of 1000 mitochondrial genes (MitoExome sequencing) in a patient with deficiency of complexes I, II and III in muscle and liver. These three complexes contain ISCs. Sanger sequencing identified the same mutation in his similarly affected cousin, who had a more severe phenotype and died while a neonate. Complex IV was also deficient in her skeletal muscle. Several other FeS proteins were also affected in both patients, including the aconitases and ferrochelatase. Mutant ISD11 only partially complemented for an ISD11 deletion in yeast. Our in vitro studies showed that the l-cysteine desulfurase activity of NFS1 was barely present when co-expressed with mutant ISD11. Our findings are consistent with a defect in the early step of ISC assembly affecting a broad variety of FeS proteins. The differences in biochemical and clinical features between the two patients may relate to limited availability of cysteine in the newborn period and suggest a potential approach to therapy.}, language = {en} } @article{BadalyanYogaSchwuchowetal.2013, author = {Badalyan, Artavazd and Yoga, Etienne Galemou and Schwuchow, Viola and P{\"o}ller, Sascha and Schuhmann, Wolfgang and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {Analysis of the interaction of the molybdenum hydroxylase PaoABC from Escherichia coli with positively and negatively charged metal complexes}, series = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, volume = {37}, journal = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, publisher = {Elsevier}, address = {New York}, issn = {1388-2481}, doi = {10.1016/j.elecom.2013.09.017}, pages = {5 -- 7}, year = {2013}, abstract = {An unusual behavior of the periplasmic aldehyde oxidoreductase (PaoABC) from Escherichia coil has been observed from electrochemical investigations of the enzyme catalyzed oxidation of aromatic aldehydes with different mediators under different conditions of ionic strength. The enzyme has similarity to other molybdoenzymes of the xanthine oxidase family, but the catalytic behavior turned out to be very different. Under steady state conditions the turnover of PaoABC is maximal at pH 4 for the negatively charged ferricyanide and at pH 9 for a positively charged osmium complex. Stopped-flow kinetic measurements of the catalytic half reaction showed that oxidation of benzaldehyde proceeds also above pH 7. Thus, benzaldehyde oxidation can proceed under acidic and basic conditions using this enzyme, a property which has not been described before for molybdenum hydroxylases. It is also suggested that the electron transfer with artificial electron acceptors and PaoABC can proceed at different protein sites and depends on the nature of the electron acceptor in addition to the ionic strength. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @misc{IobbiNivolLeimkuehler2013, author = {Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli}, series = {Biochimica et biophysica acta : Bioenergetics}, volume = {1827}, journal = {Biochimica et biophysica acta : Bioenergetics}, number = {8-9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2728}, doi = {10.1016/j.bbabio.2012.11.007}, pages = {1086 -- 1101}, year = {2013}, abstract = {Molybdenum cofactor (Moco) biosynthesis is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified in bacteria to date. In molybdoenzymes Mo is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into four general steps in bacteria: I) formation of the cyclic pyranopterin monophosphate, 2) formation of MPT, 3) insertion of molybdenum into molybdopterin to form Moco, and 4) additional modification of Moco with the attachment of GMP or CMP to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on molybdoenzymes, the biosynthesis of Moco, and its incorporation into specific target proteins focusing on Escherichia coli. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.}, language = {en} } @article{ZhangUrbanMiharaetal.2010, author = {Zhang, Wanjiao and Urban, Alexander and Mihara, Hisaaki and Leimk{\"u}hler, Silke and Kurihara, Tatsuo and Esaki, Nobuyoshi}, title = {IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in escherichia coli}, issn = {0021-9258}, doi = {10.1074/jbc.M109.082172}, year = {2010}, abstract = {The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5'-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from L-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in Delta csdA and Delta sufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.}, language = {en} } @article{BechiHerterMcKennaetal.2014, author = {Bechi, Beatrice and Herter, Susanne and McKenna, Shane and Riley, Christopher and Leimk{\"u}hler, Silke and Turner, Nicholas J. and Carnell, Andrew J.}, title = {Catalytic bio-chemo and bio-bio tandem oxidation reactions for amide and carboxylic acid synthesis}, series = {Green chemistry : an international journal and green chemistry resource}, volume = {16}, journal = {Green chemistry : an international journal and green chemistry resource}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9262}, doi = {10.1039/c4gc01321b}, pages = {4524 -- 4529}, year = {2014}, abstract = {A catalytic toolbox for three different water-based one-pot cascades to convert aryl alcohols to amides and acids and cyclic amines to lactams, involving combination of oxidative enzymes (monoamine oxidase, xanthine dehydrogenase, galactose oxidase and laccase) and chemical oxidants (TBHP or Cul(cat)/H2O2) at mild temperatures, is presented. Mutually compatible conditions were found to afford products in good to excellent yields.}, language = {en} } @article{ZengPankratovFalketal.2015, author = {Zeng, Ting and Pankratov, Dmitry and Falk, Magnus and Leimk{\"u}hler, Silke and Shleev, Sergey and Wollenberger, Ursula}, title = {Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {66}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2014.10.080}, pages = {39 -- 42}, year = {2015}, abstract = {A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchrapersHartmannKositzkietal.2015, author = {Schrapers, Peer and Hartmann, Tobias and Kositzki, Ramona and Dau, Holger and Reschke, Stefan and Schulzke, Carola and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {'Sulfido and Cysteine Ligation Changes at the Molybdenum Cofactor during Substrate Conversion by Formate Dehydrogenase (FDH) from Rhodobacter capsulatus}, series = {Inorganic chemistry}, volume = {54}, journal = {Inorganic chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/ic502880y}, pages = {3260 -- 3271}, year = {2015}, abstract = {Formate dehydrogenase (FDH) enzymes are attractive catalysts for potential carbon dioxide conversion applications. The FDH from Rhodobacter capsulatus (RcFDH) binds a bis-molybdopterin-guanine-dinucleotide (bis-MGD) cofactor, facilitating reversible formate (HCOO-) to CO2 oxidation. We characterized the molecular structure of the active site of wildtype RcFDH and protein variants using X-ray absorption spectroscopy (XAS) at the Mo K-edge. This approach has revealed concomitant binding of a sulfido ligand (Mo=S) and a conserved cysteine residue (S(Cys386)) to Mo(VI) in the active oxidized molybdenum cofactor (Moco), retention of such a coordination motif at Mo(V) in a chemically reduced enzyme, and replacement of only the S(Cys386) ligand by an oxygen of formate upon Mo(IV) formation. The lack of a Mo=S bond in RcFDH expressed in the absence of FdsC implies specific metal sulfuration by this bis-MGD binding chaperone. This process still functioned in the Cys386Ser variant, showing no Mo-S(Cys386) ligand, but retaining a Mo=S bond. The C386S variant and the protein expressed without FdsC were inactive in formate oxidation, supporting that both Moligands are essential for catalysis. Low-pH inhibition of RcFDH was attributed to protonation at the conserved His387, supported by the enhanced activity of the His387Met variant at low pH, whereas inactive cofactor species showed sulfido-to-oxo group exchange at the Mo ion. Our results support that the sulfido and S(Cys386) ligands at Mo and a hydrogen-bonded network including His387 are crucial for positioning, deprotonation, and oxidation of formate during the reaction cycle of RcFDH.}, language = {en} } @article{ContinFrascaVivekananthanetal.2015, author = {Contin, Andrea and Frasca, Stefano and Vivekananthan, Jeevanthi and Leimk{\"u}hler, Silke and Wollenberger, Ursula and Plumere, Nicolas and Schuhmann, Wolfgang}, title = {A pH Responsive Redox Hydrogel for Electrochemical Detection of Redox Silent Biocatalytic Processes. Control of Hydrogel Solvation}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {27}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201400621}, pages = {938 -- 944}, year = {2015}, abstract = {The control of bioelectrocatalytic processes by external stimuli for the indirect detection of non-redox active species was achieved using an esterase and a redox enzyme both integrated within a redox hydrogel. The poly( vinyl) imidazole Os(bpy)(2)Cl hydrogel displays pH-responsive properties. The esterase catalysed reaction leads to a local pH decrease causing protonation of imidazole moieties thus increasing hydrogel solvation and mobility of the tethered Os-complexes. This is the key step to enable improved electron transfer between an aldehyde oxidoreductase and the polymer-bound Os-complexes. The off-on switch is further integrated in a biofuel cell system for self-powered signal generation.}, language = {en} } @article{KikuchiFujisakiFurutaetal.2012, author = {Kikuchi, Hiroto and Fujisaki, Hiroshi and Furuta, Tadaomi and Okamoto, Ken and Leimk{\"u}hler, Silke and Nishino, Takeshi}, title = {Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: insight from molecular dynamics}, series = {SCIENTIFIC REPORTS}, volume = {2}, journal = {SCIENTIFIC REPORTS}, publisher = {NATURE PUBLISHING GROUP}, address = {LONDON}, issn = {2045-2322}, doi = {10.1038/srep00331}, pages = {8}, year = {2012}, abstract = {Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits bovine milk XOR with a K-i in the picomolar-order, but we found that it is a much weaker inhibitor of Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR are well-conserved as regards to catalytically important residues and three-dimensional structure, and both permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies. To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues that do not directly interact with the substrate account for the difference in inhibitory potency.}, language = {en} } @article{SpricigoLeimkuehlerGortonetal.2015, author = {Spricigo, Roberto and Leimk{\"u}hler, Silke and Gorton, Lo and Scheller, Frieder W. and Wollenberger, Ursula}, title = {The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500034}, pages = {3526 -- 3531}, year = {2015}, abstract = {We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25\% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices.}, language = {en} } @article{ChowdhuryDoscheLoehmannsroebenetal.2012, author = {Chowdhury, Mita Mullick and Dosche, Carsten and Loehmannsr{\"o}ben, Hans-Gerd and Leimk{\"u}hler, Silke}, title = {Dual role of the molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor biosynthesis in humans}, series = {The journal of biological chemistry}, volume = {287}, journal = {The journal of biological chemistry}, number = {21}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M112.351429}, pages = {17297 -- 17307}, year = {2012}, abstract = {We studied two pathways that involve the transfer of persulfide sulfur in humans, molybdenum cofactor biosynthesis and tRNA thiolation. Investigations using human cells showed that the two-domain protein MOCS3 is shared between both pathways. MOCS3 has an N-terminal adenylation domain and a C-terminal rhodanese-like domain. We showed that MOCS3 activates both MOCS2A and URM1 by adenylation and a subsequent sulfur transfer step for the formation of the thiocarboxylate group at the C terminus of each protein. MOCS2A and URM1 are beta-grasp fold proteins that contain a highly conserved C-terminal double glycine motif. The role of the terminal glycine of MOCS2A and URM1 was examined for the interaction and the cellular localization with MOCS3. Deletion of the C-terminal glycine of either MOCS2A or URM1 resulted in a loss of interaction with MOCS3. Enhanced cyan fluorescent protein and enhanced yellow fluorescent protein fusions of the proteins were constructed, and the fluorescence resonance energy transfer efficiency was determined by the decrease in the donor lifetime. The cellular localization results showed that extension of the C terminus with an additional glycine of MOCS2A and URM1 altered the localization of MOCS3 from the cytosol to the nucleus.}, language = {en} } @article{HartmannTeraoGarattinietal.2012, author = {Hartmann, Tobias and Terao, Mineko and Garattini, Enrico and Teutloff, Christian and Alfaro, Joshua F. and Jones, Jeffrey P. and Leimk{\"u}hler, Silke}, title = {The impact of single nucleotide polymorphisms on human aldehyde oxidase}, series = {Drug metabolism and disposition : the biological fate of chemicals}, volume = {40}, journal = {Drug metabolism and disposition : the biological fate of chemicals}, number = {5}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {0090-9556}, doi = {10.1124/dmd.111.043828}, pages = {856 -- 864}, year = {2012}, abstract = {Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N-1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95\% and a yield of 50 mu g/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.}, language = {en} } @article{VossNimtzLeimkuehler2011, author = {Voss, Martin and Nimtz, Manfred and Leimk{\"u}hler, Silke}, title = {Elucidation of the dual role of Mycobacterial MoeZR in Molybdenum Cofactor Biosynthesis and Cysteine Biosynthesis}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0028170}, pages = {9}, year = {2011}, abstract = {The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.}, language = {en} } @article{RedelbergerSedukGenestetal.2011, author = {Redelberger, David and Seduk, Farida and Genest, Olivier and Mejean, Vincent and Leimk{\"u}hler, Silke and Iobbi-Nivol, Chantal}, title = {YcdY Protein of Escherichia coli, an Atypical Member of the TorD Chaperone Family}, series = {Journal of bacteriology}, volume = {193}, journal = {Journal of bacteriology}, number = {23}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.05927-11}, pages = {6512 -- 6516}, year = {2011}, abstract = {The TorD family of specific chaperones is divided into four subfamilies dedicated to molybdoenzyme biogenesis and a fifth one, exemplified by YcdY of Escherichia coli, for which no defined partner has been identified so far. We propose that YcdY is the chaperone of YcdX, a zinc protein involved in the swarming motility process of E. coli, since YcdY interacts with YcdX and increases its activity in vitro.}, language = {en} } @article{HallReschkeCaoetal.2014, author = {Hall, James and Reschke, Stefan and Cao, Hongnan and Leimk{\"u}hler, Silke and Hille, Russ}, title = {The reductive half-reaction of xanthine dehydrogenase from rhodobacter capsulatus the role of GLU(232) in catalysis}, series = {The journal of biological chemistry}, volume = {289}, journal = {The journal of biological chemistry}, number = {46}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M114.603456}, pages = {32121 -- 32130}, year = {2014}, abstract = {Background: Kinetic characterization of wild-type xanthine dehydrogenase and variants. Results: Comparison of the pH dependence of both k(red) and k(red)/K-d, as well as k(cat) and k(cat)/K-m. Conclusion: Ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of xanthine. Significance: Examining the contributions of Glu(232) to catalysis is essential for understanding the mechanism of xanthine dehydrogenase. The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that k(red), the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both k(red) and k(red)/K-d from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pK(a) of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.}, language = {en} } @article{BoehmerHartmannLeimkuehler2014, author = {Boehmer, Nadine and Hartmann, Tobias and Leimk{\"u}hler, Silke}, title = {The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor}, series = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, volume = {588}, journal = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-5793}, doi = {10.1016/j.febslet.2013.12.033}, pages = {531 -- 537}, year = {2014}, abstract = {Molybdoenzymes are complex enzymes in which the molybdenum cofactor (Moco) is deeply buried in the enzyme. Most molybdoenzymes contain a specific chaperone for the insertion of Moco. For the formate dehydrogenase FdsGBA from Rhodobacter capsulatus the two chaperones FdsC and FdsD were identified to be essential for enzyme activity, but are not a subunit of the mature enzyme. Here, we purified and characterized the FdsC protein after heterologous expression in Escherichia coli. We were able to copurify FdsC with the bound Moco derivate bis-molybdopterin guanine dinucleotide. This cofactor successfully was used as a source to reconstitute the activity of molybdoenzymes. Structured summary of protein interactions: FdsC and FdsC bind by molecular sieving (View interaction) FdsD binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to RcMobA by surface plasmon resonance (View interaction) FdsC binds to FdsA by surface plasmon resonance (View interaction)}, language = {en} } @misc{YokoyamaLeimkuehler2015, author = {Yokoyama, Kenichi and Leimk{\"u}hler, Silke}, title = {The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria}, series = {Biochimica et biophysica acta : Molecular cell research}, volume = {1853}, journal = {Biochimica et biophysica acta : Molecular cell research}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-4889}, doi = {10.1016/j.bbamcr.2014.09.021}, pages = {1335 -- 1349}, year = {2015}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the assembly of molybdoenzymes and the biosynthesis of FeS clusters has been identified in the recent years: 1) the synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) the sulfurtransferase for the dithiolene group in Moco is also involved in the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the addition of a sulfido-ligand to the molybdenum atom in the active site additionally involves a sulfurtransferase, and 4) most molybdoenzymes in bacteria require FeS clusters as redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{SivanesanKalaivaniFischeretal.2012, author = {Sivanesan, Arumugam and Kalaivani, Govindasamy and Fischer, Anna and Stiba, Konstanze and Leimk{\"u}hler, Silke and Weidinger, Inez M.}, title = {Complementary surface-enhanced resonance raman Spectroscopic Biodetection of mixed protein solutions by Chitosan- and Silica-Coated Plasmon-Tuned Silver Nanoparticles}, series = {Analytical chemistry}, volume = {84}, journal = {Analytical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac301001a}, pages = {5759 -- 5764}, year = {2012}, abstract = {Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b(5), whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.}, language = {en} } @misc{LeimkuehlerWuebbensRajagopalan2011, author = {Leimk{\"u}hler, Silke and Wuebbens, Margot M. and Rajagopalan, K. V.}, title = {The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria}, series = {Coordination chemistry reviews}, volume = {255}, journal = {Coordination chemistry reviews}, number = {9-10}, publisher = {Elsevier}, address = {Lausanne}, issn = {0010-8545}, doi = {10.1016/j.ccr.2010.12.003}, pages = {1129 -- 1144}, year = {2011}, abstract = {The biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to molybdopterin phosphate group or the replacement of ligands at the molybdenum center.}, language = {en} } @article{KalimuthuLeimkuehlerBernhardt2011, author = {Kalimuthu, Palraj and Leimk{\"u}hler, Silke and Bernhardt, Paul V.}, title = {Xanthine dehydrogenase electrocatalysis autocatalysis and novel activity}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp111809f}, pages = {2655 -- 2662}, year = {2011}, abstract = {The enzyme xanthine dehydrogenase (XDH) from the purple photosynthetic bacterium Rhodobacter capsulatus catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid as part of purine metabolism. The native electron acceptor is NAD(+) but herein we show that uric acid in its 2-electron oxidized form is able to act as an artificial electron acceptor from XDH in an electrochemically driven catalytic system. Hypoxanthine oxidation is also observed with the novel production of uric acid in a series of two consecutive 2-electron oxidation reactions via xanthine. XDH exhibits native activity in terms of its pH optimum and inhibition by allopurinol.}, language = {en} } @article{DeyAdamovskiFriebeetal.2014, author = {Dey, Pradip and Adamovski, Miriam and Friebe, Simon and Badalyan, Artavazd and Mutihac, Radu-Cristian and Paulus, Florian and Leimk{\"u}hler, Silke and Wollenberger, Ursula and Haag, Rainer}, title = {Dendritic polyglycerol-poly(ethylene glycol)-based polymer networks for biosensing application}, series = {ACS applied materials \& interfaces}, volume = {6}, journal = {ACS applied materials \& interfaces}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am502018x}, pages = {8937 -- 8941}, year = {2014}, abstract = {This work describes the formation of a new dendritic polyglycerol-poly(ethylene glycol)-based 3D polymer network as a matrix for immobilization of the redox enzyme periplasmatic aldehyde oxidoreductase to create an electrochemical biosensor. The novel network is built directly on the gold surface, where it simultaneously stabilizes the enzyme for up to 4 days. The prepared biosensors can be used for amperometric detection of benzaldehyde in the range of 0.8-400 mu M.}, language = {en} } @article{HahnReschkeLeimkuehleretal.2014, author = {Hahn, Aaron and Reschke, Stefan and Leimk{\"u}hler, Silke and Risse, Thomas}, title = {Ketoxime coupling of p-Acetylphenylalanine at neutral pH for site-directed spin labeling of human sulfite oxidase}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {118}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp503471j}, pages = {7077 -- 7084}, year = {2014}, abstract = {Site-directed spin labeling of the unnatural amino acid p-acetylphenylalanine (p-AcPhe) using oxime based coupling chemistry is successfully applied to investigate human sulfite oxidase (hSO), a protein containing an essential cysteine residue, which impedes the use of thiol based coupling chemistry. The protein was found to be sensitive toward typical reaction conditions of oxime coupling, namely, acidic reaction conditions and elevated temperatures. Thus, coupling at neutral pH and room temperature is mandatory. Three catalysts described in the literature to accelerate the reaction rate have been tested. Best spin labeling efficiencies were observed for p-methoxyaniline, while the other catalysts described in the literature to have even better performance for oxime coupling at neutral pH were substantially less active or led to precipitation of the protein. A clear correlation of spin labeling efficiency with the local environment of the residue is found, shedding some light on the importance of the sterically demanding reaction complex between p-AcPhe, the aniline catalyst, and the spin label for the reaction rate. The analysis of the line shape has shown that its interpretation in terms of local environment is more challenging as compared to the well-established spin labels based on cysteine chemistry. To this end the results presented here indicate that the larger steric demand of the spin labeled p-AcPhe can induce structural effects instead of reporting on them.}, language = {en} } @misc{HartmannSchwanholdLeimkuehler2015, author = {Hartmann, Tobias and Schwanhold, Nadine and Leimk{\"u}hler, Silke}, title = {Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria}, series = {Biochimica et biophysica acta : Proteins and proteomics}, volume = {1854}, journal = {Biochimica et biophysica acta : Proteins and proteomics}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-9639}, doi = {10.1016/j.bbapap.2014.12.006}, pages = {1090 -- 1100}, year = {2015}, abstract = {The global carbon cycle depends on the biological transformations of C-1 compounds, which include the reductive incorporation of CO2 into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO2 from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO2 and H+. However, selected enzymes were identified to act as CO2 reductases, which are able to reduce CO2 to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H-2 for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZengLeimkuehlerKoetzetal.2015, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode}, series = {ACS applied materials \& interfaces}, volume = {7}, journal = {ACS applied materials \& interfaces}, number = {38}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.5b06665}, pages = {21487 -- 21494}, year = {2015}, abstract = {The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.}, language = {en} } @article{HahnEngelhardReschkeetal.2015, author = {Hahn, Aaron and Engelhard, Christopher and Reschke, Stefan and Teutloff, Christian and Bittl, Robert and Leimk{\"u}hler, Silke and Risse, Thomas}, title = {Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site-Directed Spin Labeling}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201504772}, pages = {11865 -- 11869}, year = {2015}, abstract = {Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain. A flap-like movement of the loop provides access to the Moco binding-pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo-hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation.}, language = {en} } @article{CoelhoMahroTrincaoetal.2012, author = {Coelho, Catarina and Mahro, Martin and Trincao, Jose and Carvalho, Alexandra T. P. and Ramos, Maria Joao and Terao, Mineko and Garattini, Enrico and Leimk{\"u}hler, Silke and Romao, Maria Joao}, title = {The first mammalian aldehyde oxidase crystal structure insights into substrate specificity}, series = {The journal of biological chemistry}, volume = {287}, journal = {The journal of biological chemistry}, number = {48}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M112.390419}, pages = {40690 -- 40702}, year = {2012}, abstract = {Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 angstrom. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.}, language = {en} } @article{HaveliusReschkeHornetal.2011, author = {Havelius, Kajsa G. V. and Reschke, Stefan and Horn, Sebastian and Doerlng, Alexander and Niks, Dimitri and Hille, Russ and Schulzke, Carola and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {Structure of the molybdenum site in YedY, a sulfite oxidase homologue from escherichia coli}, series = {Inorganic chemistry}, volume = {50}, journal = {Inorganic chemistry}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/ic101291j}, pages = {741 -- 748}, year = {2011}, abstract = {YedY from Escherichia coil is a new member of the sulfite oxidase family of molybdenum cofactor (Moco)-containing oxidoreductases. We investigated the atomic structure of the molybdenum site in YedY by X-ray absorption spectroscopy, in comparison to human sulfite oxidase (hSO) and to a Mo(IV) model complex. The K-edge energy was indicative of Mo(V) in YedY, in agreement with X- and Q-band electron paramagnetic resonance results, whereas the hSO protein contained Mo(VI). In YedY and hSO, molybdenum is coordinated by two sulfur ligands from the molybdopterin ligand of the Moco, one thiolate sulfur of a cysteine (average Mo-S bond length of similar to 2.4 angstrom), and one (axial) oxo ligand (Mo=O, similar to 1.7 angstrom). hSO contained a second oxo group at Mo as expected, but in YedY, two species in about a 1:1 ratio were found at the active site, corresponding to an equatorial Mo-OH bond (similar to 2.1 angstrom) or possibly to a shorter M-O(-) bond. Yet another oxygen (or nitrogen) at a similar to 2.6 angstrom distance to Mo in YedY was identified, which could originate from a water molecule in the substrate binding cavity or from an amino acid residue close to the molybdenum site, i.e., Glu104, that is replaced by a glycine in hSO, or Asn45. The addition of the poor substrate dimethyl sulfoxide to YedY left the molybdenum coordination unchanged at high pH. In contrast, we found indications that the better substrate trimethylamine N-oxide and the substrate analogue acetone were bound at a similar to 2.6 angstrom distance to the molybdenum, presumably replacing the equatorial oxygen ligand. These findings were used to interpret the recent crystal structure of YedY and bear implications for its catalytic mechanism.}, language = {en} } @inproceedings{Leimkuehler2014, author = {Leimk{\"u}hler, Silke}, title = {Studies on the Oxygen tolerant formate deyhdrogenase from rhodobacter capsulatus}, series = {Journal of biological inorganic chemistry}, volume = {19}, booktitle = {Journal of biological inorganic chemistry}, publisher = {Springer}, address = {New York}, issn = {0949-8257}, pages = {S72 -- S72}, year = {2014}, language = {en} } @article{KalimuthuLeimkuehlerBernhardt2012, author = {Kalimuthu, Palraj and Leimk{\"u}hler, Silke and Bernhardt, Paul V.}, title = {Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine}, series = {Analytical chemistry}, volume = {84}, journal = {Analytical chemistry}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac3025027}, pages = {10359 -- 10365}, year = {2012}, abstract = {The bacterial xanthine dehydrogenase (XDH) from Rhodobacter capsulatus was immobilized on an edge-plane pyrolytic graphite (EPG) electrode to construct a hypoxanthine/xanthine biosensor that functions at physiological pH. Phenazine methosulfate (PMS) was used as a mediator which acts as an artificial electron-transfer partner for XDH. The enzyme catalyzes the oxidation of hypoxanthine to xanthine and also xanthine to uric acid by an oxidative hydroxylation mechanism. The present electrochemical biosensor was optimized in terms of applied potential and pH. The electrocatalytic oxidation response showed a linear dependence on the xanthine concentration ranging from 1.0 X 10(-5) to 1.8 X 10(-3) M with a correlation coefficient of 0.994. The modified electrode shows a very low detection limit for xanthine of 0.25 nM (signal-to-noise ratio = 3) using controlled potential amperometry.}, language = {en} } @article{MareljaDambowskyBolisetal.2014, author = {Marelja, Zvonimir and Dambowsky, Miriam and Bolis, Marco and Georgiou, Marina L. and Garattini, Enrico and Missirlis, Fanis and Leimk{\"u}hler, Silke}, title = {The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities}, series = {The journal of experimental biology}, volume = {217}, journal = {The journal of experimental biology}, number = {12}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.102129}, pages = {2201 -- 2211}, year = {2014}, abstract = {In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po-lpo) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po-lpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po-lpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.}, language = {en} }