@article{BaumanBolzHirschfeldetal.2015, author = {Bauman, Spenser and Bolz, Carl Friedrich and Hirschfeld, Robert and Kirilichev, Vasily and Pape, Tobias and Siek, Jeremy G. and Tobin-Hochstadt, Sam}, title = {Pycket: A Tracing JIT for a Functional Language}, series = {ACM SIGPLAN notices}, volume = {50}, journal = {ACM SIGPLAN notices}, number = {9}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-1340}, doi = {10.1145/2784731.2784740}, pages = {22 -- 34}, year = {2015}, abstract = {We present Pycket, a high-performance tracing JIT compiler for Racket. Pycket supports a wide variety of the sophisticated features in Racket such as contracts, continuations, classes, structures, dynamic binding, and more. On average, over a standard suite of benchmarks, Pycket outperforms existing compilers, both Racket's JIT and other highly-optimizing Scheme compilers. Further, Pycket provides much better performance for Racket proxies than existing systems, dramatically reducing the overhead of contracts and gradual typing. We validate this claim with performance evaluation on multiple existing benchmark suites. The Pycket implementation is of independent interest as an application of the RPython meta-tracing framework (originally created for PyPy), which automatically generates tracing JIT compilers from interpreters. Prior work on meta-tracing focuses on bytecode interpreters, whereas Pycket is a high-level interpreter based on the CEK abstract machine and operates directly on abstract syntax trees. Pycket supports proper tail calls and first-class continuations. In the setting of a functional language, where recursion and higher-order functions are more prevalent than explicit loops, the most significant performance challenge for a tracing JIT is identifying which control flows constitute a loop-we discuss two strategies for identifying loops and measure their impact.}, language = {en} } @article{FreudenbergIngallsFelgentreffetal.2015, author = {Freudenberg, Bert and Ingalls, Dan and Felgentreff, Tim and Pape, Tobias and Hirschfeld, Robert}, title = {SqueakJS A Modern and Practical Smalltalk that Runs in Any Browser}, series = {ACM SIGPLAN notices}, volume = {50}, journal = {ACM SIGPLAN notices}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-1340}, doi = {10.1145/10.1145/2661088.2661100}, pages = {57 -- 66}, year = {2015}, abstract = {We report our experience in implementing SqueakJS, a bitcompatible implementation of Squeak/Smalltalk written in pure JavaScript. SqueakJS runs entirely in theWeb browser with a virtual file system that can be directed to a server or client-side storage. Our implementation is notable for simplicity and performance gained through adaptation to the host object memory and deployment leverage gained through the Lively Web development environment. We present several novel techniques as well as performance measurements for the resulting virtual machine. Much of this experience is potentially relevant to preserving other dynamic language systems and making them available in a browser-based environment.}, language = {en} } @article{SteinertThamsenFelgentreffetal.2015, author = {Steinert, Bastian and Thamsen, Lauritz and Felgentreff, Tim and Hirschfeld, Robert}, title = {Object Versioning to Support Recovery Needs Using Proxies to Preserve Previous Development States in Lively}, series = {ACM SIGPLAN notices}, volume = {50}, journal = {ACM SIGPLAN notices}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-1340}, doi = {10.1145/2661088.2661093}, pages = {113 -- 124}, year = {2015}, abstract = {We present object versioning as a generic approach to preserve access to previous development and application states. Version-aware references can manage the modifications made to the target object and record versions as desired. Such references can be provided without modifications to the virtual machine. We used proxies to implement the proposed concepts and demonstrate the Lively Kernel running on top of this object versioning layer. This enables Lively users to undo the effects of direct manipulation and other programming actions.}, language = {en} }