@phdthesis{Hintersberger2013, author = {Hintersberger, Esther}, title = {The role of extension during the evolution of the NW Indian Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66179}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The evolution of most orogens typically records cogenetic shortening and extension. Pervasive normal faulting in an orogen, however, has been related to late syn- and post-collisional stages of mountain building with shortening focused along the peripheral sectors of the orogen. While extensional processes constitute an integral part of orogenic evolution, the spatiotemporal characteristics and the kinematic linkage of structures related to shortening and extension in the core regions of the orogen are often not well known. Related to the India-Eurasia collision, the Himalaya forms the southern margin of the Tibetan Plateau and constitutes the most prominent Cenozoic type example of a collisional orogen. While thrusting is presently observed along the foothills of the orogen, several generations of extensional structures have been detected in the internal, high-elevation regions, both oriented either parallel or perpendicular to the strike of the orogen. In the NW Indian Himalaya, earthquake focal mechanisms, seismites and ubiquitous normal faulting in Quaternary deposits, and regional GPS measurements reveal ongoing E-W extension. In contrast to other extensional structures observed in the Himalaya, this extension direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. In this study, I took advantage of this obliquity between the trend of the orogen and structures related to E-W oriented extension in order to address the question of the driving forces of different extension directions. Thus, extension might be triggered triggered by processes within the Tibetan Plateau or originates from the curvature of the Himalayan orogen. In order to elaborate on this topic, I present new fault-kinematic data based on systematic measurements of approximately 2000 outcrop-scale brittle fault planes with displacements of up to several centimeters that cover a large area of the NW Indian Himalaya. This new data set together with field observations relevant for relative chronology allows me to distinguish six different deformation styles. One of the main results are that the overall strain pattern derived from this data reflects the regionally important contractional deformation pattern very well, but also reveals significant extensional deformation. In total, I was able to identify six deformation styles, most of which are temporally and spatially linked and represent protracted shortening, but also significant extensional directions. For example, this is the first data set where a succession of both, arc-normal and E-W extension have been documented in the Himalaya. My observations also furnish the basis for a detailed overview of the younger extensional deformation history in the NW Indian Himalaya. Field and remote-sensing based geomorphic analyses, and geochronologic 40Ar/39Ar data on synkinematic muscovites along normal faults help elucidate widespread E-W extension in the NW Indian Himalaya which must have started at approximately 14-16 Ma, if not earlier. In addition, I documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery and field inspection. Furthermore, I made field observations of regional normal faults, compiled structures from geological maps and put them in a regional context. Finally, I documented seismites in lake sediments close to the currently most active normal fault in the study area in order to extend the (paleo) seismic record of this particular fault. Taken together, this data sets document that E-W extension is the dominant active deformation style in the internal parts of the orogen. In addition, the combined field, geomorphic and remote-sensing data sets prove that E-W extension occurs in a much more larger region toward the south and west than the seismicity data have suggested. In conclusion, the data presented here reveal the importance of extension in a region, which is still dominated by ongoing collision and shortening. The regional fault distribution and cross-cutting relationships suggest that extension parallel and perpendicular to the strike of the orogen are an integral part of the southward propagation of the active thrust front and the associated lateral growth of the Himalayan arc. In the light of a wide range of models proposed for extension in the Himalaya and the Tibetan plateau, I propose that E-W extension in the NW Indian Himalaya is transferred from the Tibetan Plateau due the inability of the Karakorum fault (KF) to adequately accommodate ongoing E-W extension on the Tibetan Plateau. Furthermore, in line with other observations from Tibet, the onset of E-W normal faulting in the NW Himalaya may also reflect the attainment of high topography in this region, which generated crustal stresses conducive to spatially extensive extension.}, language = {en} }