@inproceedings{RojahnGronau2024, author = {Rojahn, Marcel and Gronau, Norbert}, title = {Openness indicators for the evaluation of digital platforms between the launch and maturity phase}, series = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 57th Annual Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Department of IT Management Shidler College of Business University of Hawaii}, address = {Honolulu, HI}, isbn = {978-0-99813-317-1}, pages = {4516 -- 4525}, year = {2024}, abstract = {In recent years, the evaluation of digital platforms has become an important focus in the field of information systems science. The identification of influential indicators that drive changes in digital platforms, specifically those related to openness, is still an unresolved issue. This paper addresses the challenge of identifying measurable indicators and characterizing the transition from launch to maturity in digital platforms. It proposes a systematic analytical approach to identify relevant openness indicators for evaluation purposes. The main contributions of this study are the following (1) the development of a comprehensive procedure for analyzing indicators, (2) the categorization of indicators as evaluation metrics within a multidimensional grid-box model, (3) the selection and evaluation of relevant indicators, (4) the identification and assessment of digital platform architectures during the launch-to-maturity transition, and (5) the evaluation of the applicability of the conceptualization and design process for digital platform evaluation.}, language = {en} } @inproceedings{AbendrothBenderGronau2024, author = {Abendroth, Adrian and Bender, Benedict and Gronau, Norbert}, title = {The evolution of original ERP customization}, series = {Proceedings of the 26th International Conference on Enterprise Information Systems}, volume = {1}, booktitle = {Proceedings of the 26th International Conference on Enterprise Information Systems}, publisher = {SCITEPRESS - Science and Technology Publications}, address = {Set{\´u}bal}, isbn = {978-989-758-692-7}, issn = {2184-4992}, doi = {10.5220/0012305500003690}, pages = {17 -- 27}, year = {2024}, abstract = {Enterprise Resource Planning (ERP) system customization is often necessary because companies have unique processes that provide their competitive advantage. Despite new technological advances such as cloud computing or model-driven development, technical ERP customization options are either outdated or ambiguously formulated in the scientific literature. Using a systematic literature review (SLR) that analyzes 137 definitions from 26 papers, the result is an analysis and aggregation of technical customization types by providing clearance and aligning with future organizational needs. The results show a shift from ERP code modification in on-premises systems to interface and integration customization in cloud ERP systems, as well as emerging technological opportunities as a way for customers and key users to perform system customization. The study contributes by providing a clear understanding of given customization types and assisting ERP users and vendors in making customization decisions.}, language = {en} } @inproceedings{PanzerGronau2024, author = {Panzer, Marcel and Gronau, Norbert}, title = {Enhancing economic efficiency in modular production systems through deep reinforcement learning}, series = {Procedia CIRP}, volume = {121}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2023.09.229}, pages = {55 -- 60}, year = {2024}, abstract = {In times of increasingly complex production processes and volatile customer demands, the production adaptability is crucial for a company's profitability and competitiveness. The ability to cope with rapidly changing customer requirements and unexpected internal and external events guarantees robust and efficient production processes, requiring a dedicated control concept at the shop floor level. Yet in today's practice, conventional control approaches remain in use, which may not keep up with the dynamic behaviour due to their scenario-specific and rigid properties. To address this challenge, deep learning methods were increasingly deployed due to their optimization and scalability properties. However, these approaches were often tested in specific operational applications and focused on technical performance indicators such as order tardiness or total throughput. In this paper, we propose a deep reinforcement learning based production control to optimize combined techno-financial performance measures. Based on pre-defined manufacturing modules that are supplied and operated by multiple agents, positive effects were observed in terms of increased revenue and reduced penalties due to lower throughput times and fewer delayed products. The combined modular and multi-staged approach as well as the distributed decision-making further leverage scalability and transferability to other scenarios.}, language = {en} } @inproceedings{RojahnGronau2023, author = {Rojahn, Marcel and Gronau, Norbert}, title = {Digital platform concepts for manufacturing companies}, series = {10th International Conference on Future Internet of Things and Cloud (FiCloud)}, booktitle = {10th International Conference on Future Internet of Things and Cloud (FiCloud)}, publisher = {IEEE}, address = {[Erscheinungsort nicht ermittelbar]}, isbn = {979-8-3503-1635-3}, doi = {10.1109/FiCloud58648.2023.00030}, pages = {149 -- 158}, year = {2023}, abstract = {Digital Platforms (DPs) has established themself in recent years as a central concept of the Information Technology Science. Due to the great diversity of digital platform concepts, clear definitions are still required. Furthermore, DPs are subject to dynamic changes from internal and external factors, which pose challenges for digital platform operators, developers and customers. Which current digital platform research directions should be taken to address these challenges remains open so far. The following paper aims to contribute to this by outlining a systematic literature review (SLR) on digital platform concepts in the context of the Industrial Internet of Things (IIoT) for manufacturing companies and provides a basis for (1) a selection of definitions of current digital platform and ecosystem concepts and (2) a selection of current digital platform research directions. These directions are diverted into (a) occurrence of digital platforms, (b) emergence of digital platforms, (c) evaluation of digital platforms, (d) development of digital platforms, and (e) selection of digital platforms.}, language = {en} } @inproceedings{BenderGronauWinter2023, author = {Bender, Benedict and Gronau, Norbert and Winter, Robert}, title = {Minitrack introduction enterprise-level information systems}, series = {Proceedings of the 56th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 56th Hawaii International Conference on System Sciences}, editor = {Bui, Tung X.}, publisher = {Hawaii International Conference on System Sciences}, address = {Honolulu, HI}, isbn = {978-0-9981331-6-4}, issn = {2572-6862}, pages = {5809 -- 5810}, year = {2023}, abstract = {While Information Systems (IS) Research on the individual and workgroup level of analysis is omnipresent, research on the enterprise-level IS is less frequent. Even though research on Enterprise Systems and their management is established in academic associations and conference programs, enterprise-level phenomena are underrepresented. This minitrack provides a forum to integrate existing research streams that traditionally needed to be attached to other topics (such as IS management or IS governance). The minitrack received broad attention. The three selected papers address different facets of the future role of enterprise-wide IS including aspects such as carbonization, ecosystem integration, and technology-organization fit.}, language = {en} } @inproceedings{GrumThimRolingetal.2023, author = {Grum, Marcus and Thim, Christof and Roling, Wiebke and Sch{\"u}ffler, Arnulf and Kluge, Annette and Gronau, Norbert}, title = {AI case-based reasoning for artificial neural networks}, series = {Artificial intelligence and industrial applications}, volume = {771}, booktitle = {Artificial intelligence and industrial applications}, editor = {Masrour, Tawfik and El Hassani, Ibtissam and Barka, Noureddine}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-43523-2}, doi = {10.1007/978-3-031-43524-9_2}, pages = {17 -- 35}, year = {2023}, abstract = {Faced with the triad of time-cost-quality, the realization of production tasks under economic conditions is not trivial. Since the number of Artificial-Intelligence-(AI)-based applications in business processes is increasing more and more nowadays, the efficient design of AI cases for production processes as well as their target-oriented improvement is essential, so that production outcomes satisfy high quality criteria and economic requirements. Both challenge production management and data scientists, aiming to assign ideal manifestations of artificial neural networks (ANNs) to a certain task. Faced with new attempts of ANN-based production process improvements [8], this paper continues research about the optimal creation, provision and utilization of ANNs. Moreover, it presents a mechanism for AI case-based reasoning for ANNs. Experiments clarify continuously improving ANN knowledge bases by this mechanism empirically. Its proof-of-concept is demonstrated by the example of four production simulation scenarios, which cover the most relevant use cases and will be the basis for examining AI cases on a quantitative level.}, language = {en} } @inproceedings{KlippertStolpmannGrumetal.2023, author = {Klippert, Monika and Stolpmann, Robert and Grum, Marcus and Thim, Christof and Gronau, Norbert and Albers, Albert}, title = {Knowledge transfer quality improvement}, series = {Procedia CIRP}, volume = {119}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2023.02.171}, pages = {919 -- 925}, year = {2023}, abstract = {Developing a new product generation requires the transfer of knowledge among various knowledge carriers. Several factors influence knowledge transfer, e.g., the complexity of engineering tasks or the competence of employees, which can decrease the efficiency and effectiveness of knowledge transfers in product engineering. Hence, improving those knowledge transfers obtains great potential, especially against the backdrop of experienced employees leaving the company due to retirement, so far, research results show, that the knowledge transfer velocity can be raised by following the Knowledge Transfer Velocity Model and implementing so-called interventions in a product engineering context. In most cases, the implemented interventions have a positive effect on knowledge transfer speed improvement. In addition to that, initial theoretical findings describe factors influencing the quality of knowledge transfers and outline a setting to empirically investigate how the quality can be improved by introducing a general description of knowledge transfer reference situations and principles to measure the quality of knowledge artifacts. To assess the quality of knowledge transfers in a product engineering context, the Knowledge Transfer Quality Model (KTQM) is created, which serves as a basis to develop and implement quality-dependent interventions for different knowledge transfer situations. As a result, this paper introduces the specifications of eight situation-adequate interventions to improve the quality of knowledge transfers in product engineering following an intervention template. Those interventions are intended to be implemented in an industrial setting to measure the quality of knowledge transfers and validate their effect.}, language = {en} } @inproceedings{BenderGronau2022, author = {Bender, Benedict and Gronau, Norbert}, title = {Introduction to the Minitrack on towards the future of enterprise systems}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, editor = {Bui, Tung}, publisher = {Hawaii International Conference on System Sciences}, address = {Honolulu, HI}, isbn = {978-0-9981331-5-7}, doi = {10.24251/HICSS.2022.869}, pages = {7232 -- 7233}, year = {2022}, abstract = {Enterprise systems have long played an important role in businesses of various sizes. With the increasing complexity of today's business relationships, specialized application systems are being used more and more. Moreover, emerging technologies such as artificial intelligence are becoming accessible for enterprise systems. This raises the question of the future role of enterprise systems. This minitrack covers novel ideas that contribute to and shape the future role of enterprise systems with five contributions.}, language = {en} } @inproceedings{BenderBertheauGronau2021, author = {Bender, Benedict and Bertheau, Clementine and Gronau, Norbert}, title = {Future ERP Systems}, series = {Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021)}, booktitle = {Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021)}, number = {2}, publisher = {Science and Technology Publications}, address = {Set{\´u}bal}, isbn = {978-989-758-509-8}, issn = {2184-4992}, doi = {10.5220/0010477307760783}, pages = {776 -- 783}, year = {2021}, abstract = {This paper presents a research agenda on the current generation of ERP systems which was developed based on a literature review on current problems of ERP systems. The problems are presented following the ERP life cycle. In the next step, the identified problems are mapped on a reference architecture model of ERP systems that is an extension of the three-tier architecture model that is widely used in practice. The research agenda is structured according to the reference architecture model and addresses the problems identified regarding data, infrastructure, adaptation, processes, and user interface layer.}, language = {en} } @inproceedings{GrumKlippertAlbersetal.2021, author = {Grum, Marcus and Klippert, Monika and Albers, Albert and Gronau, Norbert and Thim, Christof}, title = {Examining the quality of knowledge transfers}, series = {Proceedings of the Design Society}, volume = {1}, booktitle = {Proceedings of the Design Society}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2732-527X}, doi = {10.1017/pds.2021.404}, pages = {1431 -- 1440}, year = {2021}, abstract = {Already successfully used products or designs, past projects or our own experiences can be the basis for the development of new products. As reference products or existing knowledge, it is reused in the development process and across generations of products. Since further, products are developed in cooperation, the development of new product generations is characterized by knowledge-intensive processes in which information and knowledge are exchanged between different kinds of knowledge carriers. The particular knowledge transfer here describes the identification of knowledge, its transmission from the knowledge carrier to the knowledge receiver, and its application by the knowledge receiver, which includes embodied knowledge of physical products. Initial empirical findings of the quantitative effects regarding the speed of knowledge transfers already have been examined. However, the factors influencing the quality of knowledge transfer to increase the efficiency and effectiveness of knowledge transfer in product development have not yet been examined empirically. Therefore, this paper prepares an experimental setting for the empirical investigation of the quality of knowledge transfers.}, language = {en} }