@article{MoradianGossenLendlein2022, author = {Moradian, Hanieh and Gossen, Manfred and Lendlein, Andreas}, title = {Co-delivery of genes can be confounded by bicistronic vector design}, series = {MRS Communications}, volume = {12}, journal = {MRS Communications}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {2159-6859}, doi = {10.1557/s43579-021-00128-7}, pages = {145 -- 153}, year = {2022}, abstract = {Maximizing the efficiency of nanocarrier-mediated co-delivery of genes for co-expression in the same cell is critical for many applications. Strategies to maximize co-delivery of nucleic acids (NA) focused largely on carrier systems, with little attention towards payload composition itself. Here, we investigated the effects of different payload designs: co-delivery of two individual "monocistronic" NAs versus a single bicistronic NA comprising two genes separated by a 2A self-cleavage site. Unexpectedly, co-delivery via the monocistronic design resulted in a higher percentage of co-expressing cells, while predictive co-expression via the bicistronic design remained elusive. Our results will aid the application-dependent selection of the optimal methodology for co-delivery of genes.}, language = {en} } @article{MoradianRochAnthoferetal.2022, author = {Moradian, Hanieh and Roch, Toralf and Anthofer, Larissa and Lendlein, Andreas and Gossen, Manfred}, title = {Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages}, series = {Molecular therapy}, volume = {27}, journal = {Molecular therapy}, publisher = {Cell Press}, address = {Cambridge}, issn = {2162-2531}, doi = {10.1016/j.omtn.2022.01.004}, pages = {854 -- 869}, year = {2022}, abstract = {In vitro transcribed (IVT)-mRNA has been accepted as a promising therapeutic modality. Advances in facile and rapid production technologies make IVT-mRNA an appealing alternative to protein- or virus-based medicines. Robust expression levels, lack of genotoxicity, and their manageable immunogenicity benefit its clinical applicability. We postulated that innate immune responses of therapeutically relevant human cells can be tailored or abrogated by combinations of 5'-end and internal IVT-mRNA modifications. Using primary human macrophages as targets, our data show the particular importance of uridine modifications for IVT-mRNA performance. Among five nucleotide modification schemes tested, 5-methoxy-uridine outperformed other modifications up to 4-fold increased transgene expression, triggering moderate proinflammatory and non-detectable antiviral responses. Macrophage responses against IVT-mRNAs exhibiting high immunogenicity (e.g., pseudouridine) could be minimized upon HPLC purification. Conversely, 5'-end modifications had only modest effects on mRNA expression and immune responses. Our results revealed how the uptake of chemically modified IVT-mRNA impacts human macrophages, responding with distinct patterns of innate immune responses concomitant with increased transient transgene expression. We anticipate our findings are instrumental to predictively address specific cell responses required for a wide range of therapeutic applications from eliciting controlled immunogenicity in mRNA vaccines to, e.g., completely abrogating cell activation in protein replacement therapies.}, language = {en} } @misc{ListekHoenowGossenetal.2020, author = {Listek, Martin and H{\"o}now, Anja and Gossen, Manfred and Hanack, Katja}, title = {A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {865}, issn = {1866-8372}, doi = {10.25932/publishup-45989}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459893}, pages = {14}, year = {2020}, abstract = {The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step.}, language = {en} } @article{ListekHoenowGossenetal.2020, author = {Listek, Martin and H{\"o}now, Anja and Gossen, Manfred and Hanack, Katja}, title = {A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-58571-w}, pages = {12}, year = {2020}, abstract = {The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step.}, language = {en} }