@article{KozlevcarMateJaglicicetal.2009, author = {Kozlevcar, Bojan and Mate, Elizabeta and Jaglicic, Zvonko and Glažar, Lea and Golobic, Amalija and Strauch, Peter and Moncol, Jan and Kitanovski, Nives and {\`e}egedin, Primož}, title = {A small methanoato ligand in the structural differentiation of copper(II) complexes}, issn = {0277-5387}, doi = {10.1016/j.poly.2009.05.066}, year = {2009}, abstract = {Several copper(II) methanoato complexes, namely mononuclear [Cu(O2CH)(2)(2-mpy)(2)] (1) (2-mpy = 2- methylpyridine), binuclear [Cu-2(mu-O2CH)(4)(2-mpy)(2)] (2), and the polynuclear {[Cu(mu-O2CH)(2)(2-mpy)(2)] [Cu-2(mu- O2CH)(4)]}(n) (3) and {Na-2[Cu(mu-O2CH)(2)(O2CH)(2)][Cu-2(mu-O2CH)(4)]}(n) (4), have been synthesized. The mononuclear complex I is formed by two asymmetric chelate methanoate anions and two 2-methylpyridine molecules, giving a highly distorted 'elongated octahedral' coordination sphere. Complex I decomposes outside the mother-liquid, transforming into a regular isolated binuclear paddle-wheel complex 2 with four intra-binuclear bridging methanoates and two axial 2-mpy ligands. The polynuclear complex 3 is formed of alternate mononuclear and binuclear building blocks resembling the central cores of I and 2, but with significant differences, especially for the methanoates of the mononuclear units. The oxygen atom of the mononuclear unit in the octahedral axial position in 3 is simultaneously coordinated to the axial position of the binuclear paddle-wheel central core, thus enabling a chain type of structure. A chain of alternate mononuclear and binuclear building blocks, as in the neutral compound 3. are found as well in the ionic polymeric compound 4, though two types of bridges are found in 4, while there is only one type in 3. Namely, the axial position of the octahedral mononuclear unit in 4 is occupied by the methanoate oxygen atom that is already a part of the binuclear paddle-wheel unit, while one equatorial methanoate from the mononuclear unit serves as a triatomic bridge to the axial position of the binuclear building block. A very strong antiferromagnetic interaction is found for all the complexes with the paddle-wheel building blocks [Cu-2(mu-O2CH)(4)] 2-4 (-2J = 444-482 cm(-1)), attributed to the methanoate intra-binuclear bridges. On the other hand, this strong antiferromagnetism, found already at room temperature, reduces the intensity of the EPR S = 1 spin signals reported for the isolated paddle-wheel complex 2. For the polymeric 3, only the spin S = 1/2 signals are found in the EPR spectra, and they are assigned to the mononuclear building blocks. No signals with a clear origin are however seen in the room temperature EPR spectrum of the polymeric analogue 4, only the S = 1/2 signals in the low temperature spectra. This feature is suggested to be due to a specific influence between the adjacent S = 1 (binuclear) and S = 1/2 (mononuclear) species via their bridges.}, language = {en} } @article{KozlevcarOdlazekGolobicetal.2006, author = {Kozlevcar, Bojan and Odlazek, Darja and Golobic, Amalija and Pevec, Andrej and Strauch, Peter and Segedin, Primoz}, title = {Complexes with lignin model compound vanillic acid : two different carboxylate ligands in the same dinuclear tetracarboxylate complex [Cu-2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)]}, issn = {0277-5387}, doi = {10.1016/j.poly.2005.08.031}, year = {2006}, abstract = {Two copper(II) coordination compounds with vanillic acid C8H8O4 (1), namely [Cu- 2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)] (2) and [Cu-2(C8H7O4)(4)(H2O2)(2)] (3), were synthesized and characterized. Single crystals of 1-3 were obtained and their crystal structures determined. The structure of 2 shows dinuclear cage structure of copper acetate hydrate type, however with two different carboxylates, acetates and vanillic acid anions,. respectively. Both bridging anions are in pairs in trans orientation. Methanol molecules are apically coordinated (Cu-O7 2.160(2) angstrom), fulfilling square-pyramidal coordination sphere around both copper ions. The compound 2 decomposes outside mother-liquid (yielding [Cu-2(C8H7O4)(2)(O2CCH3)(2)(H2O)(2)] (2a)) with the removal of methanol, but without significant change of the dicopper tetracarboxylate cage structure, as noticed by mu(eff) 1.48 BM for 2a. Similar was found also in the X-band EPR spectra with three signals H-z1, H-perpendicular to 2 and H-z2 in the region from 0 to 600 mT. The structure of free vanillic acid 1 is composed of dimeric units of two molecules, connected by two parallel hydrogen bonds between carboxylate group of each other (O1-H(...)O2 2.642(3) angstrom), while the structure of 3 is of [Cu-2(O2CCH3)(4)(H2O)(2)] type. Interestingly, an additional signal in the EPR spectra of 3 is found at 80 mT (H- perpendicular to 1) at 298 and at 116 K, next to three signals H-z1, H-perpendicular to 2 and H-z2.}, language = {en} } @article{KozlevcarGolobicStrauch2006, author = {Kozlevcar, Bojan and Golobic, Amalija and Strauch, Peter}, title = {Dynamic pseudo Jahn-Teller distortion in a compressed octahedral CuO6 complex}, series = {Polyhedron : the international journal of inorganic and organometallic chemistry}, volume = {25}, journal = {Polyhedron : the international journal of inorganic and organometallic chemistry}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-5387}, doi = {10.1016/j.poly.2006.04.009}, pages = {2824 -- 2828}, year = {2006}, abstract = {The crystal structure of cis-[Cu(C8H7O3)(2)(H2O)(2)] (115 K data) reveals bidentate vanillinate ions coordinated via methoxy and deprotonated hydroxy oxygen atoms and water molecules in a distorted octahedral CuO6 chromophore. A cis orientation of the ligands enables two non-identical O(methoxy)-Cu-O(water) coordination axes (2.354(l) + 2.163(1); 2.151(1) + 2.020(1) angstrom), and the third shortest O(hydroxy)-Cu-O(hydroxy) axis (1.919(1) + 1.914(1) angstrom). This 115 K coordination sphere differs importantly to the one obtained from the 293 K data of the same compound, where two long 0(methoxy)-Cu-O(water) axes are of the same length, and only minor changes at the short 0(hydroxy)-Cu-O(hydroxy) axis are noticed. An axial symmetry of the complex with an inverse g(1.2)(g(perpendicular to)) > g(3)(g(parallel to)) pattern is observed in the temperature range from 298 to 180 K. A further decrease of temperature reveals gradual changes from axial to rhombic symmetry (g(1) > g(2) > g(3)) that is reversible. A mean-square displacement amplitude (MDSA) analysis reveals a disorder in the Cu-O(methoxy) bonds, but not in the other metal-ligand Cu-O(hydroxy) and Cu-O(water) bonds at 293 and 115 K. The disorder is significantly weaker in the 115 K structure. The MSDA analysis and the structural-EPR agreement show vibrational disorder in two coordination axes, due to the cis conformation of the complex with two 0(methoxy)-Cu-O(water) axes.}, language = {en} }