@article{TanskiBergstedtBevingtonetal.2019, author = {Tanski, George and Bergstedt, Helena and Bevington, Alexandre and Bonnaventure, Philip and Bouchard, Frederic and Coch, Caroline and Dumais, Simon and Evgrafova, Alevtina and Frauenfeld, Oliver W. and Frederick, Jennifer and Fritz, Michael and Frolov, Denis and Harder, Silvie and Hartmeyer, Ingo and Heslop, Joanne and Hoegstroem, Elin and Johansson, Margareta and Kraev, Gleb and Kuznetsova, Elena and Lenz, Josefine and Lupachev, Alexey and Magnin, Florence and Martens, Jannik and Maslakov, Alexey and Morgenstern, Anne and Nieuwendam, Alexandre and Oliva, Marc and Radosavljevi, Boris and Ramage, Justine Lucille and Schneider, Andrea and Stanilovskaya, Julia and Strauss, Jens and Trochim, Erin and Vecellio, Daniel J. and Weber, Samuel and Lantuit, Hugues}, title = {The Permafrost Young Researchers Network (PYRN) is getting older}, series = {Polar record}, volume = {55}, journal = {Polar record}, number = {4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0032-2474}, doi = {10.1017/S0032247418000645}, pages = {216 -- 219}, year = {2019}, abstract = {A lasting legacy of the International Polar Year (IPY) 2007-2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN's development since 2005 and the IPY's role, (2) the first 2015 PYRN census and survey results, and (3) PYRN's future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN's successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.}, language = {en} } @article{TanskiLantuitRuttoretal.2017, author = {Tanski, George and Lantuit, Hugues and Ruttor, Saskia and Knoblauch, Christian and Radosavljevic, Boris and Strauß, Jens and Wolter, Juliane and Irrgang, Anna Maria and Ramage, Justine Lucille and Fritz, Michael}, title = {Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {581}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2016.12.152}, pages = {434 -- 447}, year = {2017}, abstract = {The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (delta C-13-TOC, delta C-13-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, delta C-13 signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty adds, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55\% and a TN and DN loss of 53 and 48\%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source.}, language = {en} } @article{TanskiCoutureLantuitetal.2016, author = {Tanski, George and Couture, Nicole and Lantuit, Hugues and Eulenburg, Antje and Fritz, Michael}, title = {Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean}, series = {Global biogeochemical cycles}, volume = {30}, journal = {Global biogeochemical cycles}, publisher = {American Geophysical Union}, address = {Cambridge}, issn = {0886-6236}, doi = {10.1002/2015GB005337}, pages = {1054 -- 1068}, year = {2016}, abstract = {Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0mgL(-1) with an estimated stock of 13.63.0gm(-3) along the YC. An annual DOC flux of 54.90.9Mgyr(-1) was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.}, language = {en} } @misc{FritzOpelTanskietal.2015, author = {Fritz, Michael and Opel, Thomas and Tanski, George and Herzschuh, Ulrike and Meyer, Hanno and Eulenburg, A. and Lantuit, Hugues}, title = {Dissolved organic carbon (DOC) in Arctic ground ice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {493}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408155}, pages = {16}, year = {2015}, abstract = {Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km(2). This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost car-bon pool for ecosystems and climate feedback upon mobilization.}, language = {en} } @article{FritzOpelTanskietal.2015, author = {Fritz, Michael and Opel, Thomas and Tanski, George and Herzschuh, Ulrike and Meyer, H. and Eulenburg, A. and Lantuit, Hugues}, title = {Dissolved organic carbon (DOC) in Arctic ground ice}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {9}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-9-737-2015}, pages = {737 -- 752}, year = {2015}, abstract = {Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km(2). This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost car-bon pool for ecosystems and climate feedback upon mobilization.}, language = {en} }