@article{TrauthFoersterJungingeretal.2018, author = {Trauth, Martin H. and Foerster, Verena and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank}, title = {Abrupt or gradual?}, series = {Quaternary research : an interdisciplinary journal}, volume = {90}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2018.30}, pages = {321 -- 330}, year = {2018}, abstract = {We used a change point analysis on a late Pleistocene-Holocene lake-sediment record from the Chew Bahir basin in the southern Ethiopian Rift to determine the amplitude and duration of past climate transitions. The most dramatic changes occurred over 240 yr (from similar to 15,700 to 15,460 yr) during the onset of the African Humid Period (AHP), and over 990 yr (from similar to 4875 to 3885 yr) during its protracted termination. The AHP was interrupted by a distinct dry period coinciding with the high-latitude Younger Dryas stadial, which had an abrupt onset (less than similar to 100 yr) at similar to 13,260 yr and lasted until similar to 11,730 yr. Wet-dry-wet transitions prior to the AHP may reflect the high-latitude Dansgaard-Oeschger cycles, as indicated by cross-correlation of the potassium record with the NorthGRIP ice core record between similar to 45-20 ka. These findings may contribute to the debates regarding the amplitude, and duration and mechanisms of past climate transitions, and their possible influence on the development of early modern human cultures.}, language = {en} } @article{FoersterVogelsangJungingeretal.2015, author = {Foerster, Verena and Vogelsang, Ralf and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank and Trauth, Martin H.}, title = {Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {129}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.10.026}, pages = {333 -- 340}, year = {2015}, abstract = {Our understanding of the impact of climate-driven environmental change on prehistoric human populations is hampered by the scarcity of continuous paleoenvironmental records in the vicinity of archaeological sites. Here we compare a continuous paleoclimatic record of the last 20 ka before present from the Chew Bahir basin, southwest Ethiopia, with the available archaeological record of human presence in the region. The correlation of this record with orbitally-driven insolation variations suggests a complex nonlinear response of the environment to climate forcing, reflected in several long-term and short-term transitions between wet and dry conditions, resulting in abrupt changes between favorable and unfavorable living conditions for humans. Correlating the archaeological record in the surrounding region of the Chew Bahir basin, presumably including montane and lake-marginal refugia for human populations, with our climate record suggests a complex interplay between humans and their environment during the last 20 ka. The result may contribute to our understanding of how a dynamic environment may have impacted the adaptation and dispersal of early humans in eastern Africa. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{FoersterVogelsangJungingeretal.2016, author = {Foerster, Verena and Vogelsang, Ralf and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank and Trauth, Martin H.}, title = {Reply to the comment on "Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science Reviews 129: 333-340"}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {141}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.04.003}, pages = {130 -- 133}, year = {2016}, language = {en} } @article{FoersterAsratRamseyetal.2022, author = {Foerster, Verena and Asrat, Asfawossen and Ramsey, Christopher Bronk and Brown, Erik T. and Chapot, Melissa S. and Deino, Alan and D{\"u}sing, Walter and Grove, Matthew and Hahn, Annette and Junginger, Annett and Kaboth-Bahr, Stefanie and Lane, Christine S. and Opitz, Stephan and Noren, Anders and Roberts, Helen M. and Stockhecke, Mona and Tiedemann, Ralph and Vidal, Celine M. and Vogelsang, Ralf and Cohen, Andrew S. and Lamb, Henry F. and Schaebitz, Frank and Trauth, Martin H.}, title = {Pleistocene climate variability in eastern Africa influenced hominin evolution}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-01032-y}, pages = {805 -- 811}, year = {2022}, abstract = {Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.}, language = {en} } @article{FoersterDeocampoAsratetal.2018, author = {Foerster, Verena and Deocampo, Daniel M. and Asrat, Asfawossen and G{\"u}nter, Christina and Junginger, Annett and Kr{\"a}mer, Kai Hauke and Stroncik, Nicole A. and Trauth, Martin H.}, title = {Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {501}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.04.009}, pages = {111 -- 123}, year = {2018}, abstract = {Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation.}, language = {en} } @article{TrauthAsratDuesingetal.2019, author = {Trauth, Martin H. and Asrat, Asfawossen and D{\"u}sing, Walter and Foerster, Verena and Kr{\"a}mer, K. Hauke and Marwan, Norbert and Maslin, Mark A. and Sch{\"a}bitz, Frank}, title = {Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {53}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-019-04641-3}, pages = {2557 -- 2572}, year = {2019}, abstract = {The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin. In this statistical project we consider the Chew Bahir palaeolake to be a dynamical system consisting of interactions between its different components, such as the waterbody, the sediment beneath lake, and the organisms living within and around the lake. Recurrence is a common feature of such dynamical systems, with recurring patterns in the state of the system reflecting typical influences. Identifying and defining these influences contributes significantly to our understanding of the dynamics of the system. Different recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin could result in similar (but not identical) conditions in the lake (e.g., depth and area of the lake, alkalinity and salinity of the lake water, species assemblages in the water body, and diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recurring states within a system. Measures of complexity were subsequently introduced to complement the visual inspection of recurrence plots, and provide quantitative descriptions for use in recurrence quantification analysis (RQA). We present and discuss herein results from an RQA on the environmental record from six short (< 17 m) sediment cores collected during the CBDP, spanning the last 45 kyrs. The different types of variability and transitions in these records were classified to improve our understanding of the response of the biosphere to climate change, and especially the response of humans in the area.}, language = {en} }