@article{SchwarzeMicklerDoscheetal.2010, author = {Schwarze, Thomas and Mickler, Wulfhard and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Holdt, Hans-J{\"u}rgen}, title = {Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination}, issn = {0947-6539}, year = {2010}, abstract = {Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1-13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed a dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron-withdrawing or -donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (GPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (f), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized.}, language = {en} } @article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, doi = {10.1039/B919973j}, year = {2010}, abstract = {The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250).}, language = {en} } @article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, year = {2010}, language = {en} } @article{SchwarzeMuellerDoscheetal.2007, author = {Schwarze, Thomas and Mueller, Holger and Dosche, Carsten and Klamroth, Tillmann and Mickler, Wulfhard and Kelling, Alexandra}, title = {Luminescence detection of open-shell transition-metal ions by photoinduced electron transfer controlled by internal charge transfer of a receptor}, doi = {10.1002/anie.200603992}, year = {2007}, language = {en} } @article{HilleBergBresseletal.2008, author = {Hille, Carsten and Berg, Maik and Bressel, Lena and Munzke, Dorit and Primus, Philipp and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Dosche, Carsten}, title = {Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues}, doi = {10.1007/s00216-008-2147-0}, year = {2008}, abstract = {pH sensing in living cells represents one of the most prominent topics in biochemistry and physiology. In this study we performed one-photon and two-photon time-domain fluorescence lifetime imaging with a laser-scanning microscope using the time-correlated single-photon counting technique for imaging intracellular pH levels. The suitability of different commercial fluorescence dyes for lifetime-based pH sensing is discussed on the basis of in vitro as well of in situ measurements. Although the tested dyes are suitable for intensity-based ratiometric measurements, for lifetime- based techniques in the time-domain so far only BCECF seems to meet the requirements of reliable intracellular pH recordings in living cells.}, language = {en} } @article{KammerStarkePietruchaetal.2012, author = {Kammer, Stefan and Starke, Ines and Pietrucha, Andreas and Kelling, Alexandra and Mickler, Wulfhard and Schilde, Uwe and Dosche, Carsten and Kleinpeter, Erich and Holdt, Hans-J{\"u}rgen}, title = {1,12-Diazaperylene and 2,11-dialkylated-1,12-diazaperylene iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6: new supramolecular assemblies}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {41}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {34}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c2dt30412k}, pages = {10219 -- 10227}, year = {2012}, abstract = {A series of new monocationic iridium(III) complexes [Ir((CN)-N-boolean AND)(2)((NN)-N-boolean AND)]PF6 with "large-surface" alpha,alpha'-diimin ligands (NN)-N-boolean AND (dap = 1,12-diazaperylene, dmedap = 2,11-dimethyl-1,12-diazaperylene, dipdap = 2,11-diisopropyl-1,12-diazaperylene) and different cyclometalating ligands (CN)-N-boolean AND (piq = 1-phenylisoquinoline, bzq = benzo[h]quinoline, ppz = 1-phenylpyrazole, thpy = 2-(2-thienyl)pyridine, ppy = 2-phenylpyridine, meppy = 2-(4-methylphenyl)pyridine, dfppy = 2-(2,4-difluorophenyl)pyridine) were synthesized. The solid structures of the complexes [Ir(piq)(2)(dap)]PF6, [Ir(bzq)(2)(dap)]PF6, [Ir(ppy)(2)(dipdap)]PF6, [Ir(piq)(2)(dmedap)]PF6, [Ir(ppy)(2)(dap)]PF6 and [Ir(ppz)(2)(dap)]PF6 are reported. In [Ir(piq)(2)(dap)]PF6, the dap ligand and one of the piq ligands of each cationic complex are involved in pi-pi stacking interactions forming supramolecular channels running along the crystallographic c axis. In the crystalline [Ir(bzq)(2)(dap)]PF6 pi-pi stacking interactions between the metal complexes lead to the formation of a 2D layer structure. In addition, CH-pi interactions were found in all compounds, which are what stabilizes the solid structure. In particular, a significant number of them were found in [Ir(piq)(2)(dap)]PF6 and [Ir(bzq)(2)(dap)]PF6. The crystal structures of [Ir(ppy)(2)(dipdap)]PF6 and [Ir(ppy)(2)(dmedap)]PF6 are also presented, being the first examples of bis-cyclometalated iridium(III) complexes with phenanthroline-type alpha,alpha'-diimin ligands bearing bulky alkyl groups in the neighbourhood of the N-donor atoms. These ligands implicate a distorted octahedral coordination geometry that in turn destabilized the Ir-N-N boolean AND N bonds. The new iridium (III) complexes are not luminescent. All compounds show an electrochemically irreversible anodic peak between 1.15 and 1.58 V, which is influenced by the different cyclometalated ligands. All of the new complexes show two reversible successive one-electron "large-surface" ligand-centred reductions around -0.70 V and -1.30 V. Electrospray ionisation mass spectrometry (ESI-MS) and collision induced decomposition (CID) measurements were used to investigate the stability of the new complexes. Thereby, the stability agreed well with the order of the Ir-N-N boolean AND N bond lengths.}, language = {en} }