@article{SchuurmansBrinkmannMakoweretal.2018, author = {Schuurmans, Jasper Merijn and Brinkmann, Bregje W. and Makower, Katharina and Dittmann, Elke and Huisman, Jef and Matthijs, Hans C. P.}, title = {Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria}, series = {Harmful algae}, volume = {78}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.07.008}, pages = {47 -- 55}, year = {2018}, abstract = {Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains.}, language = {en} } @article{HackenbergHakanpaeaeCaietal.2018, author = {Hackenberg, Claudia and Hakanpaeae, Johanna and Cai, Fei and Antonyuk, Svetlana and Eigner, Caroline and Meissner, Sven and Laitaoja, Mikko and Janis, Janne and Kerfeld, Cheryl A. and Dittmann, Elke and Lamzin, Victor S.}, title = {Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {27}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1806668115}, pages = {7141 -- 7146}, year = {2018}, abstract = {Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine beta-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria.}, language = {en} } @article{HuLudsinMartinetal.2018, author = {Hu, Chenlin and Ludsin, Stuart A. and Martin, Jay F. and Dittmann, Elke and Lee, Jiyoung}, title = {Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie}, series = {Harmful algae}, volume = {77}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.05.010}, pages = {1 -- 10}, year = {2018}, abstract = {Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable - 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3-37.8\% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8\%) was significantly higher than that during lower UV periods (mean = 9.7\%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study's findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers.}, language = {en} } @article{PancraceIshidaBriandetal.2018, author = {Pancrace, Claire and Ishida, Keishi and Briand, Enora and Pichi, Douglas Gatte and Weiz, Annika R. and Guljarmow, Arthur and Scalvenzi, Thibault and Sassoon, Nathalie and Hertweck, Christian and Dittmann, Elke and Gugger, Muriel}, title = {Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.8b00918}, pages = {67 -- 75}, year = {2018}, abstract = {The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.}, language = {en} }