@article{ClarkeLauchtRidingeretal.2011, author = {Clarke, Toni-Kim and Laucht, Manfred and Ridinger, Monika and Wodarz, Norbert and Rietschel, Marcella and Maier, Wolfgang and Lathrop, Mark and Lourdusamy, Anbarasu and Zimmermann, Ulrich S. and Desrivieres, Sylvane and Schumann, Gunter}, title = {KCNJ6 is associated with adult alcohol dependence and involved in gene x early life stress interactions in adolescent alcohol drinking}, series = {Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology}, volume = {36}, journal = {Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {0893-133X}, doi = {10.1038/npp.2010.247}, pages = {1142 -- 1148}, year = {2011}, abstract = {Alcohol abuse and dependence have proven to be complex genetic traits that are influenced by environmental factors. Primate and human studies have shown that early life stress increases the propensity for alcohol abuse in later life. The reinforcing properties of alcohol are mediated by dopaminergic signaling; however, there is little evidence to indicate how stress alters alcohol reinforcement. KCNJ6 (the gene encoding G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2)) is a brain expressed potassium channel with inhibitory effects on dopaminergic tone. The properties of GIRK2 have been shown to be enhanced by the stress peptide corticotrophin-releasing hormone. Therefore, we sought to examine the role of KCNJ6 polymorphisms in adult alcohol dependence and stress-related alcohol abuse in adolescents. We selected 11 SNPs in the promoter region of KCNJ6, which were genotyped in 1152 adult alcohol dependents and 1203 controls. One SNP, rs2836016, was found to be associated with alcohol dependence (p = 0.01, false discovery rate). We then assessed rs2836016 in an adolescent sample of 261 subjects, which were characterized for early life stress and adolescent hazardous drinking, defined using the Alcohol Use Disorders Identification Test (AUDIT), to examine gene-environment interactions. In the adolescent sample, the risk genotype of rs2836016 was significantly associated with increased AUDIT scores, but only in those individuals exposed to high levels of psychosocial stress in early life (p = 0.01). Our findings show that KCNJ6 is associated with alcohol dependence and may moderate the effect of early psychosocial stress on risky alcohol drinking in adolescents. We have identified a candidate gene for future studies investigating a possible functional link between the response to stress and alcohol reinforcement.}, language = {en} } @misc{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael A. and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {950}, issn = {1866-8372}, doi = {10.25932/publishup-42568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425687}, pages = {13}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} }