@article{BergnerStreckerTrauthetal.2009, author = {Bergner, Andreas G. N. and Strecker, Manfred and Trauth, Martin H. and Deino, Alan L. and Gasse, Francoise and Blisniuk, Peter Michael and Duehnforth, Miriam}, title = {Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2009.07.008}, year = {2009}, abstract = {The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen C-14 and Ar-40/Ar-39 dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.}, language = {en} } @article{TrauthMaslinDeinoetal.2010, author = {Trauth, Martin H. and Maslin, Mark A. and Deino, Alan L. and Junginger, Annett and Lesoloyia, Moses and Odada, Eric O. and Olago, Daniel O. and Olaka, Lydia A. and Strecker, Manfred and Tiedemann, Ralph}, title = {Human evolution in a variable environment : the amplifier lakes of Eastern Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.07.007}, year = {2010}, abstract = {The development of rise Cenozoic East African Rift System (EARS) profoundly re-shaped the landscape and significantly increased the amplitude of short-term environmental response to climate variation. In particular, the development of amplifier lakes in rift basins after three million years ago significantly contributed to this exceptional sensitivity of East Africa to climate change compared to elsewhere on the African continent. Amplifier lakes are characterized by tectonically-formed graben morphologies in combination with an extreme contrast between high precipitation in the elevated parts of the catchment and high evaporation in the lake area. Such amplifier lakes respond rapidly to moderate, precessional-forced climate shifts, and as they do so apply dramatic environmental pressure to the biosphere. Rift basins, when either extremely dry or lake-filled, form important barriers for migration, mixing and competition of different populations of animals and hominins. Amplifier lakes link long-term, high-amplitude tectonic processes and short-term environmental fluctuations. East Africa may have become the place where early humans evolved as a consequence of this strong link between different time scales. (C) 2010 Elsevier Ltd. All rights reserved.}, language = {en} } @article{TrauthMaslinDeinoetal.2008, author = {Trauth, Martin H. and Maslin, Mark A. and Deino, Alan L. and Strecker, Manfred and Bergner, Andreas G. N. and D{\"u}hnforth, Miriam}, title = {High- and low-latitude forcing of Plio-Pleistocene African climate and human evolution}, doi = {10.1016/j.jhevol.2006.12.009}, year = {2008}, abstract = {The late Cenozoic climate of East Africa is punctuated by episodes of short, alternating periods of extreme wetness and aridity, superimposed on a regime of subdued moisture availability exhibiting a long-term drying trend. These periods of extreme climate variability appear to correlate with maxima in the 400-thousand-year (kyr) component of the Earth's eccentricity cycle. Prior to 2.7 Ma the wet phases appear every 400 kyrs, whereas after 2.7 Ma, the wet phases appear every 800 kyrs, with periods of precessional-forced extreme climate variability at 2.7-2.5 Ma, 1.9-1.7 Ma, and 1.1-0.9 Ma before present. The last three major lake phases occur at the times of major global climatic transitions, such as the onset of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1.0-0.7 Ma). High-latitude forcing is required to compress the Intertropical Convergence Zone so that East Africa becomes locally sensitive to precessional forcing, resulting in rapid shifts from wet to dry conditions. These periods of extreme climate variability may have provided a catalyst for evolutionary change and driven key speciation and dispersal events amongst mammals and hominins in East Africa. (C) 2007 Elsevier Ltd. All rights reserved.}, language = {en} }