@article{MuellerEngelMuelleretal.2017, author = {M{\"u}ller, Juliane and Engel, Tilman and M{\"u}ller, Steffen and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0174034}, pages = {11}, year = {2017}, abstract = {Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([\%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [\%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;\%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations.}, language = {en} } @article{MuellerCarlsohnMuelleretal.2016, author = {Mueller, Steffen and Carlsohn, Anja and Mueller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0149924}, pages = {1710 -- 1717}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} } @article{BaurMuellerHirschmuelleretal.2006, author = {Baur, Heiner and M{\"u}ller, Steffen and Hirschm{\"u}ller, Anja and Huber, Georg and Mayer, Frank}, title = {Reactivity, stability, and strength performance capacity in motor sports}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {40}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, publisher = {BMJ Publ. Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsm.2006.025783}, pages = {906 -- 910}, year = {2006}, abstract = {Background: Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. Objective: To compare reaction time, stability performance capacity, and strength performance capacity of elite racing drivers with those of age-matched, physically active controls. Methods: Eight elite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at + 30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. Results: The reaction time of the racing drivers was significantly faster than the controls ( p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p> 0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Conclusions: Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved.}, language = {en} } @article{MuellerMuellerEngeletal.2016, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Engel, Tilman and Reschke, Antje and Baur, Heiner and Mayer, Frank}, title = {Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study}, series = {Journal of biomechanics}, volume = {49}, journal = {Journal of biomechanics}, publisher = {Elsevier}, address = {Oxford}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2015.09.041}, pages = {933 -- 938}, year = {2016}, abstract = {Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 +/- 26\% (UTA/rotation) and 262 +/- 132\% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 +/- 283\%; back: 501 +/- 215\%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MuellerEngelMuelleretal.2018, author = {Mueller, Steffen and Engel, Tilman and M{\"u}ller, Juliane and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Sensorimotor exercises and enhanced trunk function}, series = {International journal of sports medicine}, volume = {39}, journal = {International journal of sports medicine}, number = {7}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/a-0592-7286}, pages = {555 -- 563}, year = {2018}, abstract = {The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95\%CI +/- 19Nm; Rotation: + 19Nm 95\%CI +/- 13Nm) and RT (Extension: +35Nm 95\%CI +/- 16Nm; Rotation: +5Nm 95\%CI +/- 4Nm) compared to CG (Extension: -4Nm 95\%CI +/- 16Nm; Rotation: -2Nm 95\%CI +/- 4Nm) was present (p<0.05).}, language = {en} } @article{MayerBonaventuraCasseletal.2012, author = {Mayer, Frank and Bonaventura, Klaus and Cassel, Michael and M{\"u}ller, Steffen and Weber, Josefine and Scharhag-Rosenberger, Friederike and Carlsohn, Anja and Baur, Heiner and Scharhag, J{\"u}rgen}, title = {Medical results of preparticipation examination in adolescent athletes}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {46}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, number = {7}, publisher = {BMJ Publ. Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsports-2011-090966}, pages = {524 -- 530}, year = {2012}, abstract = {Background Preparticipation examinations (PPE) are frequently used to evaluate eligibility for competitive sports in adolescent athletes. Nevertheless, the effectiveness of these examinations is under debate since costs are high and its validity is discussed controversial. Purpose To analyse medical findings and consequences in adolescent athletes prior to admission to a sports school. Methods In 733 adolescent athletes (318 girls, 415 boys, age 12.3+/-0.4, 16 sports disciplines), history and clinical examination (musculoskeletal, cardiovascular, general medicine) was performed to evaluate eligibility. PPE was completed by determination of blood parameters, ECG at rest and during ergometry, echocardiography and x-rays and ultrasonography if indicated. Eligibility was either approved or rated with restriction. Recommendations for therapy and/or prevention were given to the athletes and their parents. Results Historical (h) and clinical (c) findings (eg, pain, verified pathologies) were more frequent regarding the musculoskeletal system (h: 120, 16.4\%; c: 247, 33.7\%) compared to cardiovascular (h: 9, 1.2\%; c: 23, 3.1\%) or general medicine findings (h: 116, 15.8\%; c: 71, 9.7\%). ECG at rest was moderately abnormal in 46 (6.3\%) and severely abnormal in 25 athletes (3.4\%). Exercise ECG was suspicious in 25 athletes (3.4\%). Relevant echocardiographic abnormalities were found in 17 athletes (2.3\%). In 52 of 358 cases (14.5\%), x-rays led to diagnosis (eg, Spondylolisthesis). Eligibility was temporarily restricted in 41 athletes (5.6\%). Three athletes (0.4\%) had to be excluded from competitive sports. Therapy (eg, physiotherapy, medication) and/or prevention (sensorimotor training, vaccination) recommendations were deduced due to musculoskeletal (t:n = 76,10.3\%; p:n = 71,9.8\%) and general medicine findings (t:n = 80, 10.9\%; p:n = 104, 14.1\%). Conclusion Eligibility for competitive sports is restricted in only 5.5\% of adolescent athletes at age 12. Eligibility refusals are rare. However, recommendations for therapy and prevention are frequent, mainly regarding the musculoskeletal system. In spite of time and cost consumption, adolescent preparticipation before entering a career in high-performance sports is supported.}, language = {en} } @article{BaurHirschmuellerMuelleretal.2012, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and M{\"u}ller, Steffen and Cassel, Michael and Mayer, Frank}, title = {Is EMG of the lower leg dependent on weekly running mileage?}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1286250}, pages = {53 -- 57}, year = {2012}, abstract = {Neuromuscular activity of the lower leg is dependent on the task performed, speed of movement and gender. Whether training volume influences neuromuscular activity is not known. The EMG of physically active persons differing in running mileage was analysed to investigate this. 55 volunteers were allocated to a low (LM: < 30 km), intermediate (IM: > 30 km \& < 45 km) or high mileage (HM: > 45 km) group according to their weekly running volume. Neuromuscular activity of the lower leg was measured during running (3.33 m.s(-1)). Mean amplitude values for preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Higher activity in the gastrocnemius group was observed in weight acceptance in LM compared to IM (+30\%) and HM (+25\%) but lower activity was present in the push-off for LM compared to IM and HM. For the peroneal muscle, differences were present in the push-off where HM showed increased activity compared to IM (+24\%) and LM (+60\%). The tibial muscle revealed slightly lower activity during preactivation for the high mileage runners. Neuromuscular activity differs during stance between the high and intermediate group compared to low mileage runners. Slight adaptations in neuromuscular activation indicate a more target-oriented activation strategy possibly due to repetitive training in runners with higher weekly mileage.}, language = {en} } @article{BlasimannBuschHenleetal.2022, author = {Blasimann, Angela and Busch, Aglaja and Henle, Philipp and Bruhn, Sven and Vissers, Dirk and Baur, Heiner}, title = {Neuromuscular control during stair descent and artificial tibial translation after acute ACL rupture}, series = {Orthopaedic journal of sports medicine}, volume = {10}, journal = {Orthopaedic journal of sports medicine}, number = {10}, publisher = {Sage}, issn = {2325-9671}, doi = {10.1177/23259671221123299}, pages = {13}, year = {2022}, abstract = {Background: Anterior cruciate ligament (ACL) rupture has direct effect on passive and active knee stability and, specifically, stretch-reflex excitability. Purpose/Hypothesis: The purpose of this study was to investigate neuromuscular activity in patients with an acute ACL deficit (ACL-D group) compared with a matched control group with an intact ACL (ACL-I group) during stair descent and artificially induced anterior tibial translation. It was hypothesized that neuromuscular control would be impaired in the ACL-D group. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Surface electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST) muscles was recorded bilaterally in 15 patients with ACL-D (mean, 13.8 days [range, 7-21 days] since injury) and 15 controls with ACL-I during stair descent and artificially induced anterior tibial translation. The movements of stair descent were divided into preactivity, weight acceptance, and push-off phases. Reflex activity during anterior tibial translation was split into preactivity and short, medium, and late latency responses. Walking on a treadmill was used for submaximal EMG normalization. Kruskal-Wallis test and post hoc analyses with Dunn-Bonferroni correction were used to compare normalized root mean square values for each muscle, limb, movement, and reflex phase between the ACL-D and ACL-I groups. Results: During the preactivity phase of stair descent, the hamstrings of the involved leg of the ACL-D group showed 33\% to 51\% less activity compared with the matched leg and contralateral leg of the ACL-I group (P <.05). During the weight acceptance and push-off phases, the VL revealed a significant reduction (approximately 40\%) in the involved leg of the ACL-D group compared with the ACL-I group. At short latency, the BF and ST of the involved leg of the ACL-D group showed a significant increase in EMG activity compared with the uninvolved leg of the ACL-I group, by a factor of 2.2 to 4.6. Conclusion: In the acute phase after an ACL rupture, neuromuscular alterations were found mainly in the hamstrings of both limbs during stair descent and reflex activity. The potential role of prehabilitation needs to be further studied.}, language = {en} } @article{VerchHirschmuellerMuelleretal.2018, author = {Verch, Ronald and Hirschm{\"u}ller, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank and M{\"u}ller, Steffen}, title = {Is in-toing gait physiological in children?}, series = {Gait \& posture}, volume = {66}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2018.08.019}, pages = {70 -- 75}, year = {2018}, abstract = {Research question: This study aimed to establish reference values in 1-14 year old healthy children and to implement FPA-percentile curves for daily clinical use. Methods: 5910 healthy children performed at least 3 repetitions of barefoot walking over an instrumented walkway using a pressure measurement platform. The FPA [degrees] was extracted and analyzed by age and gender (mean +/- standard deviation; median with percentiles, MANOVA (age, gender) and Wilcoxon-Signed-Rank test for intra-individual side differences (alpha = 0.05). Results: FPA maximum was observed in 2-year-old children and diminished significant until the age of 4 to moderate out-toeing. For ages 5-14, no statistically significant differences in FPA values were present (p > 0.05). MANOVA confirmed age (p < 0.001) and gender (p < 0.001) as significant FPA influencing factors, without combined effect (p > 0.05). In every age group, right feet showed significantly greater out-toeing (p < 0.05). Significance: Percentile values indicate a wide FPA range in children. FPA development in young children shows a spontaneous shift towards moderate external rotation (age 2-4), whereby in-toeing <= 1-5 degrees can be present, but can return to normal. Bilateral in-toeing after the age of four and unilateral in-toeing after the age of seven should be monitored.}, language = {en} } @article{BuschBlasimannHenleetal.2019, author = {Busch, Aglaja and Blasimann, Angela and Henle, Philipp and Baur, Heiner}, title = {Neuromuscular activity during stair descent in ACL reconstructed patients}, series = {The Knee}, volume = {26}, journal = {The Knee}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0968-0160}, doi = {10.1016/j.knee.2018.12.011}, pages = {310 -- 316}, year = {2019}, abstract = {Background: The anterior cruciate ligament (ACL) rupture is a severe knee injury. Altered kinematics and kinetics in ACL reconstructed (ACL-R) patients compared to healthy participants (ACL-I) are known and attributed to an altered sensorimotor control. However, studies on neuromuscular control often lack homogeneous patient cohorts. The objective was to examine neuromuscular activity during stair descent in patients one year after ACL reconstruction. Method: Neuromuscular activity of vastus medialis (VM) and lateralis (VL), biceps femoris (BF) and semitendinosus (ST) was recorded by electromyography in 10 ACL-R (age: 26 +/- 10 years; height: 175 +/- 6 cm; mass: 75 +/- 14 kg) and 10 healthy matched controls (age: 31 +/- 7 years; height: 175 +/- 7 cm; mass: 68 +/- 10 kg). A 10-minute walking treadmill warm-up was used for submaximal normalization. Afterwards participants descended 10 times a six-step stairway at a self-selected speed. The movement was separated into pre-activation (PRE), weight acceptance (WA) and push-off phase (PO). Normalized root mean squares for each muscle, limb and movement phase were calculated. Kruskal-Wallis ANOVA compared ACL-R injured and contralateral leg and the ACL-I leg (alpha = 0.05). Results: Significant increased normalised activity in ST during WA in ACL-R injured leg compared to ACL-I and during PO in VL in the ACL-R contralateral leg compared to ACL-I. Decreased activity was shown in VM in ACL-R injured compared to contralateral leg (p < 0.05). Conclusion: Altered neuromuscular activations are present one year after ACL reconstruction compared to the contralateral and healthy matched control limb. Current standard rehabilitation programs may not be able to fully restore sensorimotor control and demand further investigations. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} }