@article{KoenigReschkeWolteretal.2013, author = {K{\"o}nig, Niklas and Reschke, Antje and Wolter, Martin and M{\"u}ller, Steffen and Mayer, Frank and Baur, Heiner}, title = {Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements}, series = {Gait \& posture}, volume = {37}, journal = {Gait \& posture}, number = {4}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2012.09.021}, pages = {637 -- 639}, year = {2013}, abstract = {In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC = 0.89. Test-retest variability was 13.0\% (+/- 11.8). The Bland-Altman analysis showed a systematic error of 2.4\%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking.}, language = {en} } @article{MuellerMuellerEngeletal.2016, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Engel, Tilman and Reschke, Antje and Baur, Heiner and Mayer, Frank}, title = {Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study}, series = {Journal of biomechanics}, volume = {49}, journal = {Journal of biomechanics}, publisher = {Elsevier}, address = {Oxford}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2015.09.041}, pages = {933 -- 938}, year = {2016}, abstract = {Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 +/- 26\% (UTA/rotation) and 262 +/- 132\% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 +/- 283\%; back: 501 +/- 215\%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }