@article{BuschBlasimannMayeretal.2021, author = {Busch, Aglaja and Blasimann, Angela and Mayer, Frank and Baur, Heiner}, title = {Alterations in sensorimotor function after ACL reconstruction during active joint position sense testing. A systematic review}, series = {PLOS ONE}, volume = {16}, journal = {PLOS ONE}, number = {6}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0253503}, pages = {14}, year = {2021}, abstract = {Background The anterior cruciate ligament (ACL) rupture can lead to impaired knee function. Reconstruction decreases the mechanical instability but might not have an impact on sensorimotor alterations. Objective Evaluation of the sensorimotor function measured with the active joint position sense (JPS) test in anterior cruciate ligament (ACL) reconstructed patients compared to the contralateral side and a healthy control group. Methods The databases MEDLINE, CINAHL, EMBASE, PEDro, Cochrane Library and SPORTDiscus were systematically searched from origin until April 2020. Studies published in English, German, French, Spanish or Italian language were included. Evaluation of the sensorimotor performance was restricted to the active joint position sense test in ACL reconstructed participants or healthy controls. The Preferred Items for Systematic Reviews and Meta-Analyses guidelines were followed. Study quality was evaluated using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Data was descriptively synthesized. Results Ten studies were included after application of the selective criteria. Higher angular deviation, reaching significant difference (p < 0.001) in one study, was shown up to three months after surgery in the affected limb. Six months post-operative significantly less error (p < 0.01) was found in the reconstructed leg compared to the contralateral side and healthy controls. One or more years after ACL reconstruction significant differences were inconsistent along the studies. Conclusions Altered sensorimotor function was present after ACL reconstruction. Due to inconsistencies and small magnitudes, clinical relevance might be questionable. JPS testing can be performed in acute injured persons and prospective studies could enhance knowledge of sensorimotor function throughout the rehabilitative processes.}, language = {en} } @misc{BuschBlasimannMayeretal.2021, author = {Busch, Aglaja and Blasimann, Angela and Mayer, Frank and Baur, Heiner}, title = {Alterations in sensorimotor function after ACL reconstruction during active joint position sense testing. A systematic review}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52177}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521775}, pages = {16}, year = {2021}, abstract = {Background The anterior cruciate ligament (ACL) rupture can lead to impaired knee function. Reconstruction decreases the mechanical instability but might not have an impact on sensorimotor alterations. Objective Evaluation of the sensorimotor function measured with the active joint position sense (JPS) test in anterior cruciate ligament (ACL) reconstructed patients compared to the contralateral side and a healthy control group. Methods The databases MEDLINE, CINAHL, EMBASE, PEDro, Cochrane Library and SPORTDiscus were systematically searched from origin until April 2020. Studies published in English, German, French, Spanish or Italian language were included. Evaluation of the sensorimotor performance was restricted to the active joint position sense test in ACL reconstructed participants or healthy controls. The Preferred Items for Systematic Reviews and Meta-Analyses guidelines were followed. Study quality was evaluated using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Data was descriptively synthesized. Results Ten studies were included after application of the selective criteria. Higher angular deviation, reaching significant difference (p < 0.001) in one study, was shown up to three months after surgery in the affected limb. Six months post-operative significantly less error (p < 0.01) was found in the reconstructed leg compared to the contralateral side and healthy controls. One or more years after ACL reconstruction significant differences were inconsistent along the studies. Conclusions Altered sensorimotor function was present after ACL reconstruction. Due to inconsistencies and small magnitudes, clinical relevance might be questionable. JPS testing can be performed in acute injured persons and prospective studies could enhance knowledge of sensorimotor function throughout the rehabilitative processes.}, language = {en} } @article{BuschBlasimannHenleetal.2019, author = {Busch, Aglaja and Blasimann, Angela and Henle, Philipp and Baur, Heiner}, title = {Neuromuscular activity during stair descent in ACL reconstructed patients}, series = {The Knee}, volume = {26}, journal = {The Knee}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0968-0160}, doi = {10.1016/j.knee.2018.12.011}, pages = {310 -- 316}, year = {2019}, abstract = {Background: The anterior cruciate ligament (ACL) rupture is a severe knee injury. Altered kinematics and kinetics in ACL reconstructed (ACL-R) patients compared to healthy participants (ACL-I) are known and attributed to an altered sensorimotor control. However, studies on neuromuscular control often lack homogeneous patient cohorts. The objective was to examine neuromuscular activity during stair descent in patients one year after ACL reconstruction. Method: Neuromuscular activity of vastus medialis (VM) and lateralis (VL), biceps femoris (BF) and semitendinosus (ST) was recorded by electromyography in 10 ACL-R (age: 26 +/- 10 years; height: 175 +/- 6 cm; mass: 75 +/- 14 kg) and 10 healthy matched controls (age: 31 +/- 7 years; height: 175 +/- 7 cm; mass: 68 +/- 10 kg). A 10-minute walking treadmill warm-up was used for submaximal normalization. Afterwards participants descended 10 times a six-step stairway at a self-selected speed. The movement was separated into pre-activation (PRE), weight acceptance (WA) and push-off phase (PO). Normalized root mean squares for each muscle, limb and movement phase were calculated. Kruskal-Wallis ANOVA compared ACL-R injured and contralateral leg and the ACL-I leg (alpha = 0.05). Results: Significant increased normalised activity in ST during WA in ACL-R injured leg compared to ACL-I and during PO in VL in the ACL-R contralateral leg compared to ACL-I. Decreased activity was shown in VM in ACL-R injured compared to contralateral leg (p < 0.05). Conclusion: Altered neuromuscular activations are present one year after ACL reconstruction compared to the contralateral and healthy matched control limb. Current standard rehabilitation programs may not be able to fully restore sensorimotor control and demand further investigations. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{VerchHirschmuellerMuelleretal.2018, author = {Verch, Ronald and Hirschm{\"u}ller, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank and M{\"u}ller, Steffen}, title = {Is in-toing gait physiological in children?}, series = {Gait \& posture}, volume = {66}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2018.08.019}, pages = {70 -- 75}, year = {2018}, abstract = {Research question: This study aimed to establish reference values in 1-14 year old healthy children and to implement FPA-percentile curves for daily clinical use. Methods: 5910 healthy children performed at least 3 repetitions of barefoot walking over an instrumented walkway using a pressure measurement platform. The FPA [degrees] was extracted and analyzed by age and gender (mean +/- standard deviation; median with percentiles, MANOVA (age, gender) and Wilcoxon-Signed-Rank test for intra-individual side differences (alpha = 0.05). Results: FPA maximum was observed in 2-year-old children and diminished significant until the age of 4 to moderate out-toeing. For ages 5-14, no statistically significant differences in FPA values were present (p > 0.05). MANOVA confirmed age (p < 0.001) and gender (p < 0.001) as significant FPA influencing factors, without combined effect (p > 0.05). In every age group, right feet showed significantly greater out-toeing (p < 0.05). Significance: Percentile values indicate a wide FPA range in children. FPA development in young children shows a spontaneous shift towards moderate external rotation (age 2-4), whereby in-toeing <= 1-5 degrees can be present, but can return to normal. Bilateral in-toeing after the age of four and unilateral in-toeing after the age of seven should be monitored.}, language = {en} } @article{MuellerEngelMuelleretal.2018, author = {Mueller, Steffen and Engel, Tilman and M{\"u}ller, Juliane and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Sensorimotor exercises and enhanced trunk function}, series = {International journal of sports medicine}, volume = {39}, journal = {International journal of sports medicine}, number = {7}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/a-0592-7286}, pages = {555 -- 563}, year = {2018}, abstract = {The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95\%CI +/- 19Nm; Rotation: + 19Nm 95\%CI +/- 13Nm) and RT (Extension: +35Nm 95\%CI +/- 16Nm; Rotation: +5Nm 95\%CI +/- 4Nm) compared to CG (Extension: -4Nm 95\%CI +/- 16Nm; Rotation: -2Nm 95\%CI +/- 4Nm) was present (p<0.05).}, language = {en} } @misc{WahmkowCasselMayeretal.2017, author = {Wahmkow, Gunnar and Cassel, Michael and Mayer, Frank and Baur, Heiner}, title = {Effects of different medial arch support heights on rearfoot kinematics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402934}, pages = {11}, year = {2017}, abstract = {Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95\% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95\% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95\% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait.}, language = {en} } @article{WahmkowCasselMayeretal.2017, author = {Wahmkow, Gunnar and Cassel, Michael and Mayer, Frank and Baur, Heiner}, title = {Effects of different medial arch support heights on rearfoot kinematics}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0172334}, year = {2017}, abstract = {Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95\% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95\% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95\% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait.}, language = {en} } @article{MuellerEngelMuelleretal.2017, author = {M{\"u}ller, Juliane and Engel, Tilman and M{\"u}ller, Steffen and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0174034}, pages = {11}, year = {2017}, abstract = {Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([\%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [\%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;\%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations.}, language = {en} } @misc{MuellerEngelMuelleretal.2017, author = {M{\"u}ller, Juliane and Engel, Tilman and M{\"u}ller, Steffen and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394931}, pages = {11}, year = {2017}, abstract = {Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([\%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [\%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;\%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations.}, language = {en} } @misc{HirschmuellerBaurBraunetal.2017, author = {Hirschmueller, Anja and Baur, Heiner and Braun, Sepp and Kreuz, Peter C. and Suedkamp, Norbert P and Niemeyer, Philipp}, title = {Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403170}, pages = {11}, year = {2017}, abstract = {Autologous chondrocyte implantation for treatment of isolated cartilage defects of the knee has become well established. Although various publications report technical modifications, clinical results, and cell-related issues, little is known about appropriate and optimal rehabilitation after autologous chondrocyte implantation. This article reviews the literature on rehabilitation after autologous chondrocyte implantation and presents a rehabilitation protocol that has been developed considering the best available evidence and has been successfully used for several years in a large number of patients who underwent autologous chondrocyte implantation for cartilage defects of the knee.}, language = {en} }