@article{VerchHirschmuellerMuelleretal.2018, author = {Verch, Ronald and Hirschm{\"u}ller, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank and M{\"u}ller, Steffen}, title = {Is in-toing gait physiological in children?}, series = {Gait \& posture}, volume = {66}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2018.08.019}, pages = {70 -- 75}, year = {2018}, abstract = {Research question: This study aimed to establish reference values in 1-14 year old healthy children and to implement FPA-percentile curves for daily clinical use. Methods: 5910 healthy children performed at least 3 repetitions of barefoot walking over an instrumented walkway using a pressure measurement platform. The FPA [degrees] was extracted and analyzed by age and gender (mean +/- standard deviation; median with percentiles, MANOVA (age, gender) and Wilcoxon-Signed-Rank test for intra-individual side differences (alpha = 0.05). Results: FPA maximum was observed in 2-year-old children and diminished significant until the age of 4 to moderate out-toeing. For ages 5-14, no statistically significant differences in FPA values were present (p > 0.05). MANOVA confirmed age (p < 0.001) and gender (p < 0.001) as significant FPA influencing factors, without combined effect (p > 0.05). In every age group, right feet showed significantly greater out-toeing (p < 0.05). Significance: Percentile values indicate a wide FPA range in children. FPA development in young children shows a spontaneous shift towards moderate external rotation (age 2-4), whereby in-toeing <= 1-5 degrees can be present, but can return to normal. Bilateral in-toeing after the age of four and unilateral in-toeing after the age of seven should be monitored.}, language = {en} } @misc{BaurHirschmuellerJahnetal.2008, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and Jahn, Michael and M{\"u}ller, Steffen and Mayer, Frank}, title = {Therapeutic efficiency and biomechanical effects of sport insoles in female runners}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {624}, issn = {1866-8364}, doi = {10.25932/publishup-43552}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435525}, pages = {4}, year = {2008}, language = {en} } @article{BaurHirschmuellerMuelleretal.2012, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and M{\"u}ller, Steffen and Cassel, Michael and Mayer, Frank}, title = {Is EMG of the lower leg dependent on weekly running mileage?}, series = {International journal of sports medicine}, volume = {33}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0031-1286250}, pages = {53 -- 57}, year = {2012}, abstract = {Neuromuscular activity of the lower leg is dependent on the task performed, speed of movement and gender. Whether training volume influences neuromuscular activity is not known. The EMG of physically active persons differing in running mileage was analysed to investigate this. 55 volunteers were allocated to a low (LM: < 30 km), intermediate (IM: > 30 km \& < 45 km) or high mileage (HM: > 45 km) group according to their weekly running volume. Neuromuscular activity of the lower leg was measured during running (3.33 m.s(-1)). Mean amplitude values for preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Higher activity in the gastrocnemius group was observed in weight acceptance in LM compared to IM (+30\%) and HM (+25\%) but lower activity was present in the push-off for LM compared to IM and HM. For the peroneal muscle, differences were present in the push-off where HM showed increased activity compared to IM (+24\%) and LM (+60\%). The tibial muscle revealed slightly lower activity during preactivation for the high mileage runners. Neuromuscular activity differs during stance between the high and intermediate group compared to low mileage runners. Slight adaptations in neuromuscular activation indicate a more target-oriented activation strategy possibly due to repetitive training in runners with higher weekly mileage.}, language = {en} } @article{BaurHirschmuellerCasseletal.2010, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and Cassel, Michael and M{\"u}ller, Steffen and Mayer, Frank}, title = {Gender-specific neuromuscular activity of the M. peroneus longus in healthy runners : a descriptive laboratory study}, issn = {0268-0033}, doi = {10.1016/j.clinbiomech.2010.06.009}, year = {2010}, abstract = {Background: Gender-specific neuromuscular activity for the ankle (e.g., peroneal muscle) is currently not known. This knowledge may contribute to the understanding of overuse injury mechanisms. The purpose was therefore to analyse the neuromuscular activity of the peroneal muscle in healthy runners. Methods: Fifty-three male and 54 female competitive runners were tested on a treadmill at 3.33 m s(-1). Neuromuscular activity of the M. peroneus longus was measured by electromyography and analysed in the time domain (onset of activation, time of maximum of activation, total time of activation) in \% of stride time in relation to touchdown (= 1.0). Additionally, mean amplitudes for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Findings: Onset of activation (mean; female: 0.86/male: 0.90, p<0.0001) and time of maximum of activation (female: 1.13/male: 1.16, p<0.0001) occurred earlier in female compared to male and the total time of activation was longer in women (female: 0.42/male: 0.39, p=0.0036). In preactivation, women showed higher amplitudes (+ 21\%) compared to men (female: 1.16/male: 0.92, p<0.0001). Activity during weight acceptance (female: 2.26/male: 2.41, p = 0.0039) and push-off (female: 0.93/male: 1.07, p = 0.0027) were higher in men. Interpretation: Activation strategies of the peroneal muscle appear to be gender-specific. Higher preactivation amplitudes in females indicate a different neuromuscular control in anticipation of touchdown ("pre-programmed activity"). These data may help interpret epidemiologically reported differences between genders in overuse injury frequency and localisation.}, language = {en} } @article{BaurMuellerHirschmuelleretal.2011, author = {Baur, Heiner and M{\"u}ller, Steffen and Hirschm{\"u}ller, Anja and Cassel, Michael and Weber, Josefine and Mayer, Frank}, title = {Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals}, series = {Journal of electromyography and kinesiology}, volume = {21}, journal = {Journal of electromyography and kinesiology}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2010.11.010}, pages = {499 -- 505}, year = {2011}, abstract = {Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT.}, language = {en} } @article{BaurHirschmuellerMuelleretal.2011, author = {Baur, Heiner and Hirschm{\"u}ller, Anja and M{\"u}ller, Steffen and Mayer, Frank}, title = {Neuromuscular activity of the peroneal muscle after foot orthoses therapy in runners}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {43}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/MSS.0b013e31820c64ae}, pages = {1500 -- 1506}, year = {2011}, abstract = {BAUR, H., A. HIRSCHMULLER, S. MULLER, and F. MAYER. Neuromuscular Activity of the Peroneal Muscle after Foot Orthoses Therapy in Runners. Med. Sci. Sports Exerc., Vol. 43, No. 8, pp. 1500-1506, 2011. Purpose: Foot orthoses are a standard option to treat overuse injury. Biomechanical data providing mechanisms of foot orthoses' effectiveness are sparse. Stability of the ankle joint complex might be a key factor. The purpose was therefore to analyze neuromuscular activity of the musculus peroneus longus in runners with overuse injury symptoms treated with foot orthoses. Methods: A total of 99 male and female runners with overuse injury symptoms randomized in a control group (CO) and an orthoses group (OR) were analyzed on a treadmill at 3.3 m.s(-1) before and after an 8-wk foot orthoses intervention. Muscular activity of the musculus peroneus longus was measured and quantified in the time domain (initial onset of activation (T-ini), time of maximal activity (T-max), total time of activation (T-tot)) and amplitude domain (amplitude in preactivation (A(pre)), weight acceptance (A(wa)), push-off (A(po))). Results: Peroneal activity in the time domain did not differ initially between CO and OR, and no effect was observed after therapy (T-ini: CO = -0.88 +/- 0.09, OR = -0.88 +/- 0.08 / T-max: CO = 0.14 +/- 0.06, OR = 0.15 +/- 0.06 / T-tot: CO = 0.40 +/- 0.09, OR = 0.41 +/- 0.09; P > 0.05). In preactivation (Apre), muscle activity was higher in OR after intervention (CO = 0.97 +/- 0.32, 95\% confidence interval = 0.90-1.05; OR = 1.18 +/- 0.43, 95\% confidence interval = 1.08-1.28; P = 0.003). There was no group or intervention effect during stance (A(wa): CO = 2.33 +/- 0.66, OR = 2.33 +/- 0.74 / A(po): CO = 0.80 +/- 0.41, OR = 0.88 +/- 0.40; P > 0.05). Conclusions: Enhanced muscle activation of the musculus peroneus longus in preactivation suggests an altered preprogrammed activity, which might lead to better ankle stability providing a possible mode of action for foot orthoses therapy.}, language = {en} } @article{HirschmuellerBaurMuelleretal.2011, author = {Hirschm{\"u}ller, Anja and Baur, Heiner and M{\"u}ller, Steffen and Helwig, Peter and Dickhuth, Hans-Hermann and Mayer, Frank}, title = {Clinical effectiveness of customised sport shoe orthoses for overuse injuries in runners a randomised controlled study}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {45}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, number = {12}, publisher = {BMJ Publ. Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsm.2008.055830}, pages = {959 -- 965}, year = {2011}, abstract = {Background and objectives Treatment of chronic running-related overuse injuries by orthopaedic shoe orthoses is very common but not evidence-based to date. Hypothesis Polyurethane foam orthoses adapted to a participant's barefoot plantar pressure distribution are an effective treatment option for chronic overuse injuries in runners. Design Prospective, randomised, controlled clinical trial. Intervention 51 patients with running injuries were treated with custom-made, semirigid running shoe orthoses for 8 weeks. 48 served as a randomised control group that continued regular training activity without any treatment. Main outcome measures Evaluation was made by the validated pain questionnaire Subjective Pain Experience Scale, the pain disability index and a comfort index in the orthoses group (ICI). Results There were statistically significant differences between the orthoses and control groups at 8 weeks for the pain disability index (mean difference 3.2; 95\% CI 0.9 to 5.5) and the Subjective Pain Experience Scale (6.6; 2.6 to 10.6). The patients with orthoses reported a rising wearing comfort (pre-treatment ICI 69/100; post-treatment ICI 83/100) that was most pronounced in the first 4 weeks (ICI 80.4/100). Conclusion Customised polyurethane running shoe orthoses are an effective conservative therapy strategy for chronic running injuries with high comfort and acceptance of injured runners.}, language = {en} } @article{HirschmuellerKonstantinidisBauretal.2011, author = {Hirschm{\"u}ller, Anja and Konstantinidis, Lukas and Baur, Heiner and M{\"u}ller, Steffen and Mehlhorn, Alexander and Kontermann, Julia and Grosse, Ulrich and S{\"u}dkamp, Norbert P. and Helwig, Peter}, title = {Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome?}, series = {Injury : international journal of the care of the injured}, volume = {42}, journal = {Injury : international journal of the care of the injured}, number = {10}, publisher = {Elsevier}, address = {Oxford}, issn = {0020-1383}, doi = {10.1016/j.injury.2010.09.040}, pages = {1135 -- 1143}, year = {2011}, abstract = {Fractures of the calcaneus are often associated with serious permanent disability, a considerable reduction in quality of life, and high socio-economic cost. Although some studies have already reported changes in plantar pressure distribution after calcaneal fracture, no investigation has yet focused on the patient's strength and postural control. Method: 60 patients with unilateral, operatively treated, intra-articular calcaneal fractures were clinically and biomechanically evaluated >1 year postoperatively (physical examination, SF-36, AOFAS score, lower leg isokinetic strength, postural control and gait analysis including plantar pressure distribution). Results were correlated to clinical outcome and preoperative radiological findings (Bohler angle, Zwipp and Sanders Score). Results: Clinical examination revealed a statistically significant reduction in range of motion at the tibiotalar and the subtalar joint on the affected side. Additionally, there was a statistically significant reduction of plantar flexor peak torque of the injured compared to the uninjured limb (p < 0.001) as well as a reduction in postural control that was also more pronounced on the initially injured side (standing duration 4.2 +/- 2.9 s vs. 7.6 +/- 2.1 s, p < 0.05). Plantar pressure measurements revealed a statistically significant pressure reduction at the hindfoot (p = 0.0007) and a pressure increase at the midfoot (p = 0.0001) and beneath the lateral forefoot (p = 0.037) of the injured foot. There was only a weak correlation between radiological classifications and clinical outcome but a moderate correlation between strength differences and the clinical questionnaires (CC 0.27-0.4) as well as between standing duration and the clinical questionnaires. Although thigh circumference was also reduced on the injured side, there was no important relationship between changes in lower leg circumference and strength suggesting that measurement of leg circumference may not be a valid assessment of maximum strength deficits. Self-selected walking speed was the parameter that showed the best correlation with clinical outcome (AOFAS score). Conclusion: Calcaneal fractures are associated with a significant reduction in ankle joint ROM, plantar flexion strength and postural control. These impairments seem to be highly relevant to the patients. Restoration of muscular strength and proprioception should therefore be aggressively addressed in the rehabilitation process after these fractures.}, language = {en} } @article{BaurMuellerHirschmuelleretal.2006, author = {Baur, Heiner and M{\"u}ller, Steffen and Hirschm{\"u}ller, Anja and Huber, Georg and Mayer, Frank}, title = {Reactivity, stability, and strength performance capacity in motor sports}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {40}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, publisher = {BMJ Publ. Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsm.2006.025783}, pages = {906 -- 910}, year = {2006}, abstract = {Background: Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. Objective: To compare reaction time, stability performance capacity, and strength performance capacity of elite racing drivers with those of age-matched, physically active controls. Methods: Eight elite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at + 30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. Results: The reaction time of the racing drivers was significantly faster than the controls ( p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p> 0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Conclusions: Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved.}, language = {en} }