@phdthesis{Barbirz2017, author = {Barbirz, Stefanie}, title = {Highly specific binders for bacterial polysaccharides}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2017}, language = {en} } @article{SchmidtRabschBroekeretal.2016, author = {Schmidt, Andreas and Rabsch, Wolfgang and Br{\"o}ker, Nina Kristin and Barbirz, Stefanie}, title = {Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens}, series = {BMC microbiology}, volume = {16}, journal = {BMC microbiology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2180}, doi = {10.1186/s12866-016-0826-0}, pages = {2214 -- 2226}, year = {2016}, abstract = {Background: Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results: We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions: Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production.}, language = {en} } @article{KangGohlkeEngstroemetal.2016, author = {Kang, Yu and Gohlke, Ulrich and Engstr{\"o}m, Olof and Hamark, Christoffer and Scheidt, Tom and Kunstmann, Ruth Sonja and Heinemann, Udo and Widmalm, G{\"o}ran and Santer, Mark and Barbirz, Stefanie}, title = {Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions}, series = {Journal of the American Chemical Society}, volume = {138}, journal = {Journal of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.6b00240}, pages = {9109 -- 9118}, year = {2016}, abstract = {Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.}, language = {en} } @misc{KunstmannScheidtBuchwaldetal.2018, author = {Kunstmann, Ruth Sonja and Scheidt, Tom and Buchwald, Saskia and Helm, Alexandra and Mulard, Laurence A. and Fruth, Angelika and Barbirz, Stefanie}, title = {Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens}, series = {Viruses}, journal = {Viruses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417831}, pages = {18}, year = {2018}, abstract = {Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80\% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.}, language = {en} } @article{KunstmannScheidtBuchwaldetal.2018, author = {Kunstmann, Ruth Sonja and Scheidt, Tom and Buchwald, Saskia and Helm, Alexandra and Mulard, Laurence A. and Fruth, Angelika and Barbirz, Stefanie}, title = {Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {8}, publisher = {Molecular Diversity Preservation International (MDPI)}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v10080431}, pages = {1 -- 18}, year = {2018}, abstract = {Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80\% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.}, language = {en} } @misc{GeorgievGrafmuellerBlegeretal.2018, author = {Georgiev, Vasil N. and Grafm{\"u}ller, Andrea and Bl{\´e}ger, David and Hecht, Stefan and Kunstmann, Ruth Sonja and Barbirz, Stefanie and Lipowsky, Reinhard and Dimova, Rumiana}, title = {Area increase and budding in giant vesicles triggered by light}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {5}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {733}, issn = {1866-8372}, doi = {10.25932/publishup-42629}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426298}, pages = {9}, year = {2018}, abstract = {Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5\% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.}, language = {en} } @article{AndresHankeBaxaetal.2010, author = {Andres, Dorothee and Hanke, Christin and Baxa, Ulrich and Seul, Anait and Barbirz, Stefanie and Seckler, Robert}, title = {Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro}, issn = {0021-9258}, doi = {10.1074/jbc.M110.169003}, year = {2010}, abstract = {Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tail-spikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.}, language = {en} } @article{AndresBaxaHankeetal.2010, author = {Andres, Dorothee and Baxa, Ulrich and Hanke, Christin and Seckler, Robert and Barbirz, Stefanie}, title = {Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection}, issn = {0300-5127}, doi = {10.1042/Bst0381386}, year = {2010}, abstract = {TSPs (tailspike proteins) are essential infection organelles of bacteriophage P22. Upon infection, P22TSP binds to and cleaves the O-antigen moiety of the LPS (lipopolysaccharide) of its Salmonella host To elucidate the role of TSP during infection, we have studied binding to oligosaccharides and polysaccharides of Salmonella enteric Typhimurium and Enteritidis in vitro. P22TSP is a trimeric beta-helical protein with a carbohydrate-binding site on each subunit. Octasaccharide O-antigen fragments bind to P22TSP with micromolar dissociation constants. Moreover, P22TSP is an endorhamnosidase and cleaves the host O-antigen. Catalytic residues lie at the periphery of the high-affinity binding site, which enables unproductive binding modes, resulting in slow hydrolysis. However, the role of this hydrolysis function during infection remains unclear. Binding of polysaccharide to P22TSP is of high avidity with slow dissociation rates when compared with oligosaccharides. In vivo, the infection of Salmonella with phage P22 can be completely inhibited by the addition of LPS, indicating that binding of phage to its host via TSP is an essential step for infection.}, language = {en} } @article{BroekerRoskeVallerianietal.2019, author = {Broeker, Nina K. and Roske, Yvette and Valleriani, Angelo and Stephan, Mareike Sophia and Andres, Dorothee and Koetz, Joachim and Heinemann, Udo and Barbirz, Stefanie}, title = {Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail}, series = {The journal of biological chemistry}, volume = {294}, journal = {The journal of biological chemistry}, number = {31}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA119.008133}, pages = {11751 -- 11761}, year = {2019}, abstract = {Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.}, language = {en} } @article{StephanBroekerSaragliadisetal.2020, author = {Stephan, Mareike Sophia and Br{\"o}ker, Nina K. and Saragliadis, Athanasios and Roos, Norbert and Linke, Dirk and Barbirz, Stefanie}, title = {In vitro analysis of O-antigen-specific bacteriophage P22 inactivation by Salmonella outer membrane vesicles}, series = {Frontiers in microbiology}, volume = {11}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.510638}, pages = {12}, year = {2020}, abstract = {Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions ofSalmonella(S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host.In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.}, language = {en} }