@article{MuellerBarbirzHeinleetal.2008, author = {M{\"u}ller, J{\"u}rgen J. and Barbirz, Stefanie and Heinle, Karolin and Freiberg, Alexander and Seckler, Robert and Heinemann, Udo}, title = {An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6}, doi = {10.1016/j.str.2008.01.019}, year = {2008}, abstract = {Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 {\AA} crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed ; helix. In the trimer of Sf6 TSP, the parallel ; helices form a left-handed, coiled;; coil with a pitch of 340 {\AA}. The C-terminal domain consists of a ; sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two ;-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.}, language = {en} } @article{AndresGohlkeBroekeretal.2013, author = {Andres, Dorothee and Gohlke, Ulrich and Br{\"o}ker, Nina Kristin and Schulze, Stefan and Rabsch, Wolfgang and Heinemann, Udo and Barbirz, Stefanie and Seckler, Robert}, title = {An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws224}, pages = {486 -- 494}, year = {2013}, abstract = {Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of similar to 7 kJ mol(-1) at 20 degrees C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable phi/epsilon glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites.}, language = {en} } @inproceedings{SmithMattosBarbirz2013, author = {Smith, Mychal Daijon and Mattos, Carla and Barbirz, Stefanie}, title = {The multiple solvent crystal structures method of P22TSP}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {27}, booktitle = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {11}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, pages = {1}, year = {2013}, language = {en} } @article{AndresRoskeDoeringetal.2012, author = {Andres, Dorothee and Roske, Yvette and Doering, Carolin and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system}, series = {Molecular microbiology}, volume = {83}, journal = {Molecular microbiology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0950-382X}, doi = {10.1111/j.1365-2958.2012.08006.x}, pages = {1244 -- 1253}, year = {2012}, abstract = {Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event.}, language = {en} } @inproceedings{DonohueSmithBroekeretal.2015, author = {Donohue, Patrick and Smith, Mychal Daijon and Br{\"o}ker, Nina Kristin and Doering, Carolin and Mattos, Carla and Barbirz, Stefanie}, title = {Multiple Solvent Crystal Structures of phage P22 tailspike protein: An analysis of binding site hot spots and surface hydration}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, booktitle = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, pages = {1}, year = {2015}, language = {en} } @article{ZaccheusBroekerLundborgetal.2012, author = {Zaccheus, Mona V. and Br{\"o}ker, Nina Kristin and Lundborg, Magnus and Uetrecht, Charlotte and Barbirz, Stefanie and Widmalm, Goran}, title = {Structural studies of the O-antigen polysaccharide from Escherichia coli TD2158 having O18 serogroup specificity and aspects of its interaction with the tailspike endoglycosidase of the infecting bacteriophage HK620}, series = {Carbohydrate research}, volume = {357}, journal = {Carbohydrate research}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0008-6215}, doi = {10.1016/j.carres.2012.05.022}, pages = {118 -- 125}, year = {2012}, abstract = {We have analyzed the O-antigen polysaccharide of the previously uncharacterized Escherichia coli strain TD2158 which is a host of bacteriophage HK620. This bacteriophage recognizes and cleaves the polysaccharide with its tailspike protein (TSP). The polysaccharide preparation as well as oligosaccharides obtained from HK620TSP endoglycosidase digests were analyzed with NMR spectroscopy. Additionally, sugar analysis was performed on the O-antigen polysaccharide and MALDI-TOF MS was used in oligosaccharide analysis. The present study revealed a heterogeneous polysaccharide with a hexasaccharide repeating unit of the following structure: alpha-D-Glcp-(1 -> 6) vertical bar vertical bar 2)-alpha-L-Rhap-(1 -> 6)-alpha-D-Glcp-(1 -> 4)-alpha-D-Galp-(1 -> 3)-alpha-D-GlcpNAc- (1 ->vertical bar beta-D-Glcp/beta-D-GlcpNAc-(1 -> 3) A repeating unit with a D-GlcNAc substitution of D-Gal has been described earlier as characteristic for serogroup O18A1. Accordingly, we termed repeating units with D-Glc substitution at D-Gal as O18A2. NMR analyses of the polysaccharide confirmed that O18A1- and O18A2-type repeats were present in a 1:1 ratio. However, HK620TSP preferentially bound the D-GlcNAc- substituted O18A1-type repeating units in its high affinity binding pocket with a dissociation constant of 140 mu M and disfavored the O18A2-type having a beta-D-Glcp-(1 -> 3)-linked group. As a result, in hexasaccharide preparations, O18A1 and O18A2 repeats were present in a 9: 1 ratio stressing the clear preference of O18A1- type repeats to be cleaved by HK620TSP.}, language = {en} } @article{BroekerGohlkeMuelleretal.2013, author = {Br{\"o}ker, Nina Kristin and Gohlke, Ulrich and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws126}, pages = {59 -- 68}, year = {2013}, abstract = {Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.}, language = {en} } @phdthesis{Barbirz2017, author = {Barbirz, Stefanie}, title = {Highly specific binders for bacterial polysaccharides}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2017}, language = {en} } @article{SchmidtRabschBroekeretal.2016, author = {Schmidt, Andreas and Rabsch, Wolfgang and Br{\"o}ker, Nina Kristin and Barbirz, Stefanie}, title = {Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens}, series = {BMC microbiology}, volume = {16}, journal = {BMC microbiology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2180}, doi = {10.1186/s12866-016-0826-0}, pages = {2214 -- 2226}, year = {2016}, abstract = {Background: Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results: We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions: Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production.}, language = {en} } @misc{KunstmannScheidtBuchwaldetal.2018, author = {Kunstmann, Ruth Sonja and Scheidt, Tom and Buchwald, Saskia and Helm, Alexandra and Mulard, Laurence A. and Fruth, Angelika and Barbirz, Stefanie}, title = {Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens}, series = {Viruses}, journal = {Viruses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417831}, pages = {18}, year = {2018}, abstract = {Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tagĀ®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80\% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.}, language = {en} }