@article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} } @article{ThiekenApelMerz2015, author = {Thieken, Annegret and Apel, Heiko and Merz, Bruno}, title = {Assessing the probability of large-scale flood loss events: a case study for the river Rhine, Germany}, series = {Journal of flood risk management}, volume = {8}, journal = {Journal of flood risk management}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1753-318X}, doi = {10.1111/jfr3.12091}, pages = {247 -- 262}, year = {2015}, abstract = {Flood risk analyses are often estimated assuming the same flood intensity along the river reach under study, i.e. discharges are calculated for a number of return periods T, e.g. 10 or 100 years, at several streamflow gauges. T-year discharges are regionalised and then transferred into T-year water levels, inundated areas and impacts. This approach assumes that (1) flood scenarios are homogeneous throughout a river basin, and (2) the T-year damage corresponds to the T-year discharge. Using a reach at the river Rhine, this homogeneous approach is compared with an approach that is based on four flood types with different spatial discharge patterns. For each type, a regression model was created and used in a Monte-Carlo framework to derive heterogeneous scenarios. Per scenario, four cumulative impact indicators were calculated: (1) the total inundated area, (2) the exposed settlement and industrial areas, (3) the exposed population and 4) the potential building loss. Their frequency curves were used to establish a ranking of eight past flood events according to their severity. The investigation revealed that the two assumptions of the homogeneous approach do not hold. It tends to overestimate event probabilities in large areas. Therefore, the generation of heterogeneous scenarios should receive more attention.}, language = {en} } @article{SteirouGerlitzApeletal.2019, author = {Steirou, Eva and Gerlitz, Lars and Apel, Heiko and Sun, Xun and Merz, Bruno}, title = {Climate influences on flood probabilities across Europe}, series = {Hydrology and earth system sciences : HESS}, volume = {23}, journal = {Hydrology and earth system sciences : HESS}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-23-1305-2019}, pages = {1305 -- 1322}, year = {2019}, abstract = {The link between streamflow extremes and climatology has been widely studied in recent decades. However, a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the European level is missing. Here we fit a climate-informed generalized extreme value (GEV) distribution to about 600 streamflow records in Europe for each of the standard seasons, i.e., to winter, spring, summer and autumn maxima, and compare it with the classical GEV distribution with parameters invariant in time. The study adopts a Bayesian framework and covers the period 1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely the North Atlantic Oscillation (NAO), the east Atlantic pattern (EA), the east Atlantic-western Russian pattern (EA/WR), the Scandinavia pattern (SCA) and the polar-Eurasian pattern (POL). It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the classical GEV distribution for 46\% of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered circulation modes for flood generation. For certain regions, such as northwestern Scandinavia and the British Isles, yearly variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly different flood estimates for individual years that can also persist for longer time periods.}, language = {en} } @article{MerzApelDungNguyenetal.2018, author = {Merz, Bruno and Apel, Heiko and Dung Nguyen, Viet-Dung and Falter, Daniela and Guse, Bj{\"o}rn and Hundecha, Yeshewatesfa and Kreibich, Heidi and Schr{\"o}ter, Kai and Vorogushyn, Sergiy}, title = {From precipitation to damage}, series = {Global flood hazard : applications in modeling, mapping and forecasting}, volume = {233}, journal = {Global flood hazard : applications in modeling, mapping and forecasting}, publisher = {American Geophysical Union}, address = {Washington}, isbn = {978-1-119-21788-6}, issn = {0065-8448}, doi = {10.1002/9781119217886.ch10}, pages = {169 -- 183}, year = {2018}, abstract = {Flood risk assessments for large river basins often involve piecing together smaller-scale assessments leading to erroneous risk statements. We describe a coupled model chain for quantifying flood risk at the scale of 100,000 km(2). It consists of a catchment model, a 1D-2D river network model, and a loss model. We introduce the model chain and present two applications. The first application for the Elbe River basin with an area of 66,000 km(2) demonstrates that it is feasible to simulate the complete risk chain for large river basins in a continuous simulation mode with high temporal and spatial resolution. In the second application, RFM is coupled to a multisite weather generator and applied to the Mulde catchment with an area of 6,000 km(2). This approach is able to provide a very long time series of spatially heterogeneous patterns of precipitation, discharge, inundation, and damage. These patterns respect the spatial correlation of the different processes and are suitable to derive large-scale risk estimates. We discuss how the RFM approach can be transferred to the continental scale.}, language = {en} } @article{NguyenVietDungMerzBardossyetal.2015, author = {Nguyen Viet Dung, and Merz, Bruno and Bardossy, Andras and Apel, Heiko}, title = {Handling uncertainty in bivariate quantile estimation - An application to flood hazard analysis in the Mekong Delta}, series = {Journal of hydrology}, volume = {527}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2015.05.033}, pages = {704 -- 717}, year = {2015}, abstract = {The hydrological load causing flood hazard is in many instances not only determined by peak discharge, but is a multidimensional problem. While the methodology for multivariate frequency analysis is well established, the estimation of the associated uncertainty is rarely studied. In this paper, a method is developed to quantify the different sources of uncertainty for a bivariate flood frequency analysis. The method is exemplarily developed for the Mekong Delta (MD), one of the largest and most densely populated river deltas worldwide. Floods in the MD are the basis for the livelihoods of the local population, but they are also the major hazard. This hazard has, however, not been studied within the frame of a probabilistic flood hazard analysis. The nature of the floods in the MD suggests a bivariate approach, because the societal flood severity is determined by both peak discharge and flood volume. The uncertainty caused by selection of statistical models and parameter estimation procedures are analyzed by applying different models and methods. For the quantification of the sampling uncertainty two bootstrapping methods were applied. The developed bootstrapping-based uncertainty estimation method shows that large uncertainties are associated with the estimation of bivariate flood quantiles. This uncertainty is much larger than the model selection and fitting uncertainty. Given the rather long data series of 88 years, it is concluded that bivariate flood frequency analysis is expected to carry significant uncertainty and that the quantification and reduction of uncertainty merit greater attention. But despite this uncertainty the proposed approach has certainly major advantages compared to a univariate approach, because (a) it reflects the two essential aspects of floods in this region, (b) the uncertainties are inherent for every bivariate frequency analysis in hydrology due to the general limited length of observations and can hardly be avoided, and (c) a framework for the quantification of the uncertainties is given, which can be used and interpreted in the hazard assessment. In addition it is shown by a parametric bootstrapping experiment how longer observation time series can reduce the sampling uncertainty. Based on this finding it is concluded that bivariate frequency analyses in hydrology would greatly benefit from discharge time series augmented by proxy or historical data, or by causal hydrologic expansion of time series. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{MetinDungSchroeteretal.2018, author = {Metin, Ayse Duha and Dung, Nguyen Viet and Schr{\"o}ter, Kai and Guse, Bj{\"o}rn and Apel, Heiko and Kreibich, Heidi and Vorogushyn, Sergiy and Merz, Bruno}, title = {How do changes along the risk chain affect flood risk?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1067}, issn = {1866-8372}, doi = {10.25932/publishup-46879}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468790}, pages = {22}, year = {2018}, abstract = {Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.}, language = {en} } @article{MetinNguyenVietDungSchroeteretal.2018, author = {Metin, Ayse Duha and Nguyen Viet Dung, and Schr{\"o}ter, Kai and Guse, Bj{\"o}rn and Apel, Heiko and Kreibich, Heidi and Vorogushyn, Sergiy and Merz, Bruno}, title = {How do changes along the risk chain affect flood risk?}, series = {Natural hazards and earth system sciences}, volume = {18}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-18-3089-2018}, pages = {3089 -- 3108}, year = {2018}, abstract = {Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.}, language = {en} } @article{NguyenLeDuyNguyenVietDuHeidbuecheletal.2019, author = {Nguyen Le Duy, and Nguyen Viet Du, and Heidb{\"u}chel, Ingo and Meyer, Hanno and Weiler, Markus and Merz, Bruno and Apel, Heiko}, title = {Identification of groundwater mean transit times of precipitation and riverbank infiltration by two-component lumped parameter models}, series = {Hydrological processes}, volume = {33}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13549}, pages = {3098 -- 3118}, year = {2019}, abstract = {Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (delta O-18 and delta H-2), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two-component lumped parameter models (LPMs) that are solved using delta O-18 records. The study illustrates that two-component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low-permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface-groundwater interaction can be conceptualized by exploiting two-component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.}, language = {en} } @article{DelgadoMerzApel2014, author = {Delgado, Jose Miguel Martins and Merz, Bruno and Apel, Heiko}, title = {Projecting flood hazard under climate change: an alternative approach to model chains}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-1579-2014}, pages = {1579 -- 1589}, year = {2014}, abstract = {Flood hazard projections under climate change are typically derived by applying model chains consisting of the following elements: "emission scenario - global climate model - downscaling, possibly including bias correction hydrological model - flood frequency analysis". To date, this approach yields very uncertain results, due to the difficulties of global and regional climate models to represent precipitation. The implementation of such model chains requires major efforts, and their complexity is high. We propose for the Mekong River an alternative approach which is based on a shortened model chain: "emission scenario - global climate model - non-stationary flood frequency model". The underlying idea is to use a link between the Western Pacific monsoon and local flood characteristics: the variance of the monsoon drives a non-stationary flood frequency model, yielding a direct estimate of flood probabilities. This approach bypasses the uncertain precipitation, since the monsoon variance is derived from large-scale wind fields which are better represented by climate models. The simplicity of the monsoon-flood link allows deriving large ensembles of flood projections under climate change. We conclude that this is a worthwhile, complementary approach to the typical model chains in catchments where a substantial link between climate and floods is found.}, language = {en} } @misc{SeibertMerzApel2017, author = {Seibert, Mathias and Merz, Bruno and Apel, Heiko}, title = {Seasonal forecasting of hydrological drought in the Limpopo Basin}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {626}, doi = {10.25932/publishup-41844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418442}, pages = {1611 -- 1629}, year = {2017}, abstract = {The Limpopo Basin in southern Africa is prone to droughts which affect the livelihood of millions of people in South Africa, Botswana, Zimbabwe and Mozambique. Seasonal drought early warning is thus vital for the whole region. In this study, the predictability of hydrological droughts during the main runoff period from December to May is assessed using statistical approaches. Three methods (multiple linear models, artificial neural networks, random forest regression trees) are compared in terms of their ability to forecast streamflow with up to 12 months of lead time. The following four main findings result from the study. 1. There are stations in the basin at which standardised streamflow is predictable with lead times up to 12 months. The results show high inter-station differences of forecast skill but reach a coefficient of determination as high as 0.73 (cross validated). 2. A large range of potential predictors is considered in this study, comprising well-established climate indices, customised teleconnection indices derived from sea surface temperatures and antecedent streamflow as a proxy of catchment conditions. El Nino and customised indices, representing sea surface temperature in the Atlantic and Indian oceans, prove to be important teleconnection predictors for the region. Antecedent streamflow is a strong predictor in small catchments (with median 42\% explained variance), whereas teleconnections exert a stronger influence in large catchments. 3. Multiple linear models show the best forecast skill in this study and the greatest robustness compared to artificial neural networks and random forest regression trees, despite their capabilities to represent nonlinear relationships. 4. Employed in early warning, the models can be used to forecast a specific drought level. Even if the coefficient of determination is low, the forecast models have a skill better than a climatological forecast, which is shown by analysis of receiver operating characteristics (ROCs). Seasonal statistical forecasts in the Limpopo show promising results, and thus it is recommended to employ them as complementary to existing forecasts in order to strengthen preparedness for droughts.}, language = {en} }