@phdthesis{KaramzadehToularoud2020, author = {Karamzadeh Toularoud, Nasim}, title = {Earthquake source and receiver array optimal configuration}, doi = {10.25932/publishup-45982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459828}, school = {Universit{\"a}t Potsdam}, pages = {viii, 94}, year = {2020}, abstract = {Seismic receiver arrays have variety of applications in seismology, particularly when the signal enhancement is a prerequisite to detect seismic events, and in situations where installing and maintaining sparse networks are impractical. This thesis has mainly focused on the development of a new approach for seismological source and receiver array design.The proposed approach deals with the array design task as an optimization problem. The criteria and prerequisite constraints in array design task are integrated in objective function definition and evaluation of a optimization process. Three cases are covered in this thesis: (1) a 2-D receiver array geometry optimization, (2) a 3-D source array optimization, and (3) an array application to monitor microseismic data, where the effect of different types of noise are evaluated. A flexible receiver array design framework implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints, e.g. land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. The use of synthetic array beamforming as an array design criteria is suggested. The framework is customized by designing a 2-D small scale receiver array to monitor earthquake swarm activity in northwest Bohemia/ Vogtland in central Europe. Two sub-functions are defined to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space, and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the sub-functions into one single scalar objective function to use in the optimization process. The idea of optimal array is employed to design a 3-D source array, given a well-located catalog of events. The conditions to make source arrays are formulated in four objective functions and a weighted sum technique is used to combine them in one single scalar function. The criteria are: (1) accurate slowness vector estimation, (2) high waveform coherency, (3) low location error and (4) high energy of coda phases. The method is evaluated by two experiments, (1) a synthetic test using realistic synthetic seismograms, (2) using real seismograms, and for each case optimized SA elements are configured using the data from the Vogtland area. The location of a possible scatterer in the velocity model, that makes the converted/reflected phases, e.g. sp-phases, is retrieved by a grid search method using the optimized SA. The accuracy of the approach and the obtained results demonstrated that the method is applicable to study the crustal structure and the location of crustal scatterers when the strong converted phases are observed in the data and a well-located catalog is available. Small aperture arrays are employed in seismology for a variety of applications, ranging from pure event detection to monitor and study of microcosmic activities. The monitoring of microseismicity during temporary human activities is often difficult, as the signal-to-noise ratio is very low and noise is strongly increased during the operation. The combination of small aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites, (1) accompanying a fracking experiment in sedimentary shale at 4~km depth, and (2) above a gas field under depletion. Arrays recordings are compared with recordings available from shallow borehole sensors and examples of detection and location performance of the array are given. The effect of different types of noise at array and borehole stations are compared and discussed.}, language = {en} } @phdthesis{Nooshiri2020, author = {Nooshiri, Nima}, title = {Improvement of routine seismic source parameter estimation based on regional and teleseismic recordings}, doi = {10.25932/publishup-45946}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459462}, school = {Universit{\"a}t Potsdam}, pages = {ix, 118}, year = {2020}, abstract = {Seismological agencies play an important role in seismological research and seismic hazard mitigation by providing source parameters of seismic events (location, magnitude, mechanism), and keeping these data accessible in the long term. The availability of catalogues of seismic source parameters is an important requirement for the evaluation and mitigation of seismic hazards, and the catalogues are particularly valuable to the research community as they provide fundamental long-term data in the geophysical sciences. This work is well motivated by the rising demand for developing more robust and efficient methods for routine source parameter estimation, and ultimately generation of reliable catalogues of seismic source parameters. Specifically, the aim of this work is to develop some methods to determine hypocentre location and temporal evolution of seismic sources based on regional and teleseismic observations more accurately, and investigate the potential of these methods to be integrated in near real-time processing. To achieve this, a location method that considers several events simultaneously and improves the relative location accuracy among nearby events has been provided. This method tries to reduce the biasing effects of the lateral velocity heterogeneities (or equivalently to compensate for limitations and inaccuracies in the assumed velocity model) by calculating a set of timing corrections for each seismic station. The systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure can be corrected without explicitly solving for a velocity model. Application to sets of multiple earthquakes in complex tectonic environments with strongly heterogeneous structure such as subduction zones and plate boundary region demonstrate that this relocation process significantly improves the hypocentre locations compared to standard locations. To meet the computational demands of this location process, a new open-source software package has been developed that allows for efficient relocation of large-scale multiple seismic events using arrival time data. Upon that, a flexible location framework is provided which can be tailored to various application cases on local, regional, and global scales. The latest version of the software distribution including source codes, a user guide, an example data set, and a change history, is freely available to the community. The developed relocation algorithm has been modified slightly and then its performance in a simulated near real-time processing has been evaluated. It has been demonstrated that applying the proposed technique significantly reduces the bias in routine locations and enhance the ability to locate the lower magnitude events using only regional arrival data. Finally, to return to emphasis on global seismic monitoring, an inversion framework has been developed to determine the seismic source time function through direct waveform fitting of teleseismic recordings. The inversion technique can be systematically applied to moderate- size seismic events and has the potential to be performed in near real-time applications. It is exemplified by application to an abnormal seismic event; the 2017 North Korean nuclear explosion. The presented work and application case studies in this dissertation represent the first step in an effort to establish a framework for automatic, routine generation of reliable catalogues of seismic event locations and source time functions.}, language = {en} } @phdthesis{Holm2020, author = {Holm, Stine}, title = {Methanogenic communities and metaplasmidome-encoded functions in permafrost environments exposed to thaw}, school = {Universit{\"a}t Potsdam}, pages = {VI, 243}, year = {2020}, abstract = {This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40\% and 100\% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA ('metaplasmidome') carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing 'metaplasmidomes' established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies.}, language = {en} } @phdthesis{Menges2020, author = {Menges, Johanna}, title = {Organic Carbon Storage, Transfer and Transformation in the Himalaya}, school = {Universit{\"a}t Potsdam}, pages = {179}, year = {2020}, abstract = {The transfer of particulate organic carbon from continents to the ocean is an important component of the global carbon cycle. Transfer to and burial of photosynthetically fixed biospheric organic carbon in marine sediments can effectively sequester atmospheric carbon dioxide over geological timescales. The exhumation and erosion of fossil organic carbon contained in sedimentary rocks, i.e. petrogenic carbon, can result in remineralization, releasing carbon to the atmosphere. In contrast, eroded petrogenic organic carbon that gets transferred back to the ocean and reburied does not affect atmospheric carbon content. Mountain ranges play a key role in this transfer since they can source vast amounts of sediment including particulate organic carbon. Globally, the export of both, biospheric and petrogenic organic carbon has been linked to sediment export. Additionally, short transfer times from mountains to the ocean and high sediment concentrations have been shown to increase the likelihood of organic carbon burial. While the importance of mountain ranges in the organic carbon cycle is now widely recognized, the processes acting within mountain ranges to influence the storage, cycling and mobilization of organic carbon, as well as carbon fluxes from mountain ranges remain poorly constrained. In this thesis, I employ different methods to assess the nature and fate of particulate organic carbon in mountain belts, ranging from the molecular to regional landscape scale. These studies are located along the Trans-Himalayan Kali Gandaki River in Central Nepal. This river traverses all major geological and climatic zones of the Himalaya, from the dry northern Tibetan plateau to the high-relief, monsoon dominated steep High Himalaya and the lower relief and abundant vegetation of the Lesser Himalayan region. First, I document how biospheric organic matter has accumulated during the Holocene in the headwaters of the Kali Gandaki River valley, by combining compound specific isotope measurements with different dating methods and grain size data, and investigate the stability of this organic carbon reservoir on millennial timescales. I show, that around 1.6 ka an eco-geomorphic tipping point occurred leading to a destabilization of the landscape resulting in today's high erosion rates and the excavation of the aged organic carbon reservoir. This study highlights the climatic and geomorphic controls on biospheric organic carbon storage and release from mountain ranges. Second, I systematically investigate the spatial variation of particulate organic carbon fluxes across the Himalaya along the Kali Gandaki River, using bulk stable and radioactive isotopes combined with a new Bayesian modeling approach. The detailed dataset allows the distinction of aged and modern biospheric organic carbon as well as petrogenic organic carbon across the Himalayan mountain range and the investigation of the role of climatic and geomorphic factors in their riverine export. The data suggest a decoupling of the particulate organic carbon from the sediment yield along the Kali Gandaki River, partially driven by climatic and geomorphic processes. In contrast to the suspended sediment, a large part of the particulate organic carbon exported by the river originates from the Tibetan part of the catchment and is dominated by petrogenic organic carbon derived from Jurassic shales with only minor contributions of modern and aged biospheric organic carbon. These findings emphasize the importance of organic carbon source distribution and erosion mechanisms in determining the organic carbon export from mountain ranges. In a third step, I explore the potential of ultra-high resolution mass spectrometry for particulate organic carbon transport studies. I have generated a novel and unprecedented high-resolution molecular dataset, which contains up to 103 molecular formulas of the lipid fraction of particulate organic matter for modern and aged biospheric carbon, petrogenic organic carbon and river sediments. First, I test if this dataset can be used to better resolve different organic carbon sources and to identify new geochemical tracers. Using multivariate statistics, I identify up to 10² characteristic molecular formulas for the major organic carbon sources in the upper part of the Kali Gandaki catchment, and trace their transfer from the surrounding landscape into the river sediment. Second, I test the potential of the molecular dataset to trace molecular transformations along source-to-sink pathways. I identify changes in molecular metrics derived from the dataset, which are characteristic of transformation processes during incorporation of litter into soil, the aging of soil material, and the mobilization of the organic carbon into the river. These two studies demonstrate that high-resolution molecular datasets open a promising analytical window on particulate organic carbon and can provide novel insights into the composition, sourcing and transformation of riverine particulate organic carbon. Collectively, these studies advance our understanding of the processes contributing to the storage and mobilization of organic carbon in the Central Himalaya, the mountain belt that dominates global erosional fluxes. They do so by identifying the major sources of particulate organic carbon to the Trans-Himalayan Kali Gandaki River, by elucidating their sensitivity to climate and geomorphic processes, and by identifying some of the transformations of this material on the molecular scale. As a result, the thesis demonstrates that the amount and composition of organic carbon routed from mountain belts is a function of the dynamic interactions of geologic, biologic, geomorphic and climatic processes within the mountain belt. This understanding will ultimately help in answering whether the build-up and erosion of mountain ranges over geological time represents a net carbon source or sink to the atmosphere. Beyond this, the thesis contributes to our technical ability to characterize organic matter and attribute it to sources by scoping the potential of high-end molecular analysis.}, language = {en} } @phdthesis{RodriguezZuluaga2020, author = {Rodriguez Zuluaga, Juan}, title = {Electric and magnetic characteristics of equatorial plasma depletions}, doi = {10.25932/publishup-44587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445873}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 87}, year = {2020}, abstract = {Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA's Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm's measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several 'firsts' in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment.}, language = {en} } @phdthesis{Kaya2020, author = {Kaya, Mustafa}, title = {Cretaceous-Paleogene evolution of the proto-Paratethys Sea in Central Asia}, doi = {10.25932/publishup-48329}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483295}, school = {Universit{\"a}t Potsdam}, pages = {iv, 237}, year = {2020}, abstract = {Unlike today's prevailing terrestrial features, the geologic past of Central Asia witnessed marine environments and conditions as well. A vast, shallow sea, known as proto-Paratethys, extended across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous to Paleogene times. This sea formed about 160 million years ago (during Jurassic times) when the waters of the Tethys Ocean flooded into Eurasia. It drastically retreated to the west and became isolated as the Paratethys during the Late Eocene-Oligocene (ca. 34 Ma). Having well-constrained timing and paleogeography for the Cretaceous-Paleogene proto-Paratethys sea incursions in Central Asia is essential to properly understand and distinguish the controlling mechanisms and their link to Asian paleoenvironmental and paleoclimatic change. The Cretaceous-Paleogene tectonic evolution of the Pamir and Tibet and their far-field effects play a significant role on the sedimentological and structural evolution of the Central Asian basins and on the evolution of the proto-Paratethys sea fluctuations as well. Comparing the records of the sea incursions to the tectonic and eustatic events has paramount importance to reveal the controlling mechanisms behind the sea incursions. However, due to inaccuracies in the dating of rocks (mostly continental rocks and marine rocks with benthic microfossils providing low-resolution biostratigraphic constraints) and conflicting results, there has been no consensus on the timing of the sea incursions and interpretation of their records has been in question. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed paleoenvironmental analysis for the Cretaceous and Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins, in Central Asia. This enables us to identify the major drivers of marine fluctuations and their potential consequences on regional and global climate, particularly Asian aridification and the global carbon cycle perturbations such as the Paleocene-Eocene Thermal Maximum (PETM). To estimate the paleogeographic evolution of the proto-Paratethys Sea, the refined age constraints and detailed paleoenvironmental interpretations are combined with successive paleogeographic maps. Regional coastlines and depositional environments during the Cretaceous-Paleogene sea advances and retreats were drawn based on the results of this thesis and integrated with existing literature to generate new paleogeographic maps. Before its final westward retreat in the Eocene, a total of six Cretaceous and Paleogene major sea incursions have been distinguished from the sedimentary records of the Tajik and Tarim basins in Central Asia. All have been studied and documented here. We identify the presence of marine conditions already in the Early Cretaceous in the western Tajik Basin, followed by the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) major marine incursions far into the eastern Tajik and Tarim basins separated by a Turonian-Coniacian (ca. 92-86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous invasion of the sea into the Tajik Basin is related to increased Pamir tectonism (at ca. 130 - 90 Ma) in a retro-arc basin setting inferred to be linked to collision and subduction. This tectonic event mainly governed the Cenomanian (ca. 100 Ma) sea incursion in conjunction with a coeval global eustatic high resulting in the maximum geographic extent of the sea. The following Turonian-Coniacian (ca. 92-86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence related to a regime change in Pamir tectonism from compression to extension. The Santonian (ca. 86 Ma) major sea incursion was more likely controlled dominantly by eustasy as also evidenced by the coeval fluctuations in the west Siberian Basin. During the early Maastrichtian, the global Late Cretaceous cooling is inferred from the disappearance of mollusk-rich limestones and the dominance of bryozoan-rich and echinoderm-rich limestones in the Tajik Basin documenting the first evidence for the Late Cretaceous cooling event in Central Asia. Following the last Cretaceous sea incursion, a major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma). This is followed by the largest recorded proto-Paratethys sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma). The transgression of the next incursion is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd Paleogene sea incursions. However, the last Paleogene sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. We lastly study the mechanics, relative contribution and preservation efficiency of ancient epicontinental seas as carbon sinks with new and existing data, using organic rich (sapropel) deposits dated to the PETM from the extensive epicontinental proto-Paratethys and West Siberian seas. We estimate ca. 1390±230 Gt organic C burial, a substantial amount compared to previously estimated global total excess organic C burial (ca. 1700-2900 Gt) is focused in the proto-Paratethys and West Siberian seas alone. We also speculate that enhanced organic carbon burial later over much of the proto-Paratethys (and later Paratethys) basin (during the deposition of the Kuma Formation and Maikop series, repectively) may have majorly contributed to drawdown of atmospheric carbon dioxide before and during the EOT cooling and glaciation of Antarctica. For past periods with smaller epicontinental seas, the effectiveness of this negative carbon cycle feedback was arguably diminished, and the same likely applies to the present-day.}, language = {en} } @phdthesis{Meijer2020, author = {Meijer, Niels}, title = {Asian dust, monsoons and westerlies during the Eocene}, doi = {10.25932/publishup-48868}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-488687}, school = {Universit{\"a}t Potsdam}, pages = {ix, 155}, year = {2020}, abstract = {The East Asian monsoons characterize the modern-day Asian climate, yet their geological history and driving mechanisms remain controversial. The southeasterly summer monsoon provides moisture, whereas the northwesterly winter monsoon sweeps up dust from the arid Asian interior to form the Chinese Loess Plateau. The onset of this loess accumulation, and therefore of the monsoons, was thought to be 8 million years ago (Ma). However, in recent years these loess records have been extended further back in time to the Eocene (56-34 Ma), a period characterized by significant changes in both the regional geography and global climate. Yet the extent to which these reconfigurations drive atmospheric circulation and whether the loess-like deposits are monsoonal remains debated. In this thesis, I study the terrestrial deposits of the Xining Basin previously identified as Eocene loess, to derive the paleoenvironmental evolution of the region and identify the geological processes that have shaped the Asian climate. I review dust deposits in the geological record and conclude that these are commonly represented by a mix of both windblown and water-laid sediments, in contrast to the pure windblown material known as loess. Yet by using a combination of quartz surface morphologies, provenance characteristics and distinguishing grain-size distributions, windblown dust can be identified and quantified in a variety of settings. This has important implications for tracking aridification and dust-fluxes throughout the geological record. Past reversals of Earth's magnetic field are recorded in the deposits of the Xining Basin and I use these together with a dated volcanic ash layer to accurately constrain the age to the Eocene period. A combination of pollen assemblages, low dust abundances and other geochemical data indicates that the early Eocene was relatively humid suggesting an intensified summer monsoon due to the warmer greenhouse climate at this time. A subsequent shift from predominantly freshwater to salt lakes reflects a long-term aridification trend possibly driven by global cooling and the continuous uplift of the Tibetan Plateau. Superimposed on this aridification are wetter intervals reflected in more abundant lake deposits which correlate with highstands of the inland proto-Paratethys Sea. This sea covered the Eurasian continent and thereby provided additional moisture to the winter-time westerlies during the middle to late Eocene. The long-term aridification culminated in an abrupt shift at 40 Ma reflected by the onset of windblown dust, an increase in steppe-desert pollen, the occurrence of high-latitude orbital cycles and northwesterly winds identified in deflated salt deposits. Together, these indicate the onset of a Siberian high atmospheric pressure system driving the East Asian winter monsoon as well as dust storms and was triggered by a major sea retreat from the Asian interior. These results therefore show that the proto-Paratethys Sea, though less well recognized than the Tibetan Plateau and global climate, has been a major driver in setting up the modern-day climate in Asia.}, language = {en} } @phdthesis{Desanois2019, author = {Desanois, Louis}, title = {On the origin of epithermal Sn-Ag-Zn mineralization at the Pirquitas mine, NW Argentina}, doi = {10.25932/publishup-43082}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430822}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2019}, abstract = {The Central Andes host large reserves of base and precious metals. The region represented, in 2017, an important part of the worldwide mining activity. Three principal types of deposits have been identified and studied: 1) porphyry type deposits extending from central Chile and Argentina to Bolivia, and Northern Peru, 2) iron oxide-copper-gold (IOCG) deposits, extending from central Peru to central Chile, and 3) epithermal tin polymetallic deposits extending from Southern Peru to Northern Argentina, which compose a large part of the deposits of the Bolivian Tin Belt (BTB). Deposits in the BTB can be divided into two major types: (1) tin-tungsten-zinc pluton-related polymetallic deposits, and (2) tin-silver-lead-zinc epithermal polymetallic vein deposits. Mina Pirquitas is a tin-silver-lead-zinc epithermal polymetallic vein deposit, located in north-west Argentina, that used to be one of the most important tin-silver producing mine of the country. It was interpreted to be part of the BTB and it shares similar mineral associations with southern pluton related BTB epithermal deposits. Two major mineralization events related to three pulses of magmatic fluids mixed with meteoric water have been identified. The first event can be divided in two stages: 1) stage I-1 with quartz, pyrite, and cassiterite precipitating from fluids between 233 and 370 °C and salinity between 0 and 7.5 wt\%, corresponding to a first pulse of fluids, and 2) stage I-2 with sphalerite and tin-silver-lead-antimony sulfosalts precipitating from fluids between 213 and 274 °C with salinity up to 10.6 wt\%, corresponding to a new pulse of magmatic fluids in the hydrothermal system. The mineralization event II deposited the richest silver ores at Pirquitas. Event II fluids temperatures and salinities range between 190 and 252 °C and between 0.9 and 4.3 wt\% respectively. This corresponds to the waning supply of magmatic fluids. Noble gas isotopic compositions and concentrations in ore-hosted fluid inclusions demonstrate a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine area. Lead and sulfur isotopic measurements on ore minerals show that Pirquitas shares a similar signature with southern pluton related polymetallic deposits in the BTB. Furthermore, the major part of the sulfur isotopic values of sulfide and sulfosalt minerals from Pirquitas ranges in the field for sulfur derived from igneous rocks. This suggests that the main contribution of sulfur to the hydrothermal system at Pirquitas is likely to be magma-derived. The precise age of the deposit is still unknown but the results of wolframite dating of 2.9 ± 9.1 Ma and local structural observations suggest that the late mineralization event is younger than 12 Ma.}, language = {en} } @phdthesis{Beamish2019, author = {Beamish, Alison Leslie}, title = {Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation}, doi = {10.25932/publishup-42592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425922}, school = {Universit{\"a}t Potsdam}, pages = {v, 102}, year = {2019}, abstract = {Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.}, language = {en} } @phdthesis{Scheffler2019, author = {Scheffler, Franziska}, title = {Selenite pseudomorphs}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, language = {en} } @phdthesis{Kneier2019, author = {Kneier, Fabian}, title = {Subsea permafrost in the Laptev Sea}, school = {Universit{\"a}t Potsdam}, pages = {220}, year = {2019}, abstract = {During lower sea levels in glacial periods, deep permafrost formed on large continental shelf areas of the Arctic Ocean. Subsequent sea level rise and coastal erosion created subsea permafrost, which generally degrades after inundation under the influence of a complex suite of marine, near-shore processes. Global warming is especially pronounced in the Arctic, and will increase the transition to and the degradation of subsea permafrost, with implications for atmospheric climate forcing, offshore infrastructure, and aquatic ecosystems. This thesis combines new geophysical, borehole observational and modelling approaches to enhance our understanding of subsea permafrost dynamics. Three specific areas for advancement were identified: (I) sparsity of observational data, (II) lacking implementation of salt infiltration mechanisms in models, and (III) poor understanding of the regional differences in key driving parameters. This study tested the combination of spectral ratios of the ambient vibration seismic wavefield, together with estimated shear wave velocity from seismic interferometry analysis, for estimating the thickness of the unfrozen sediment overlying the ice-bonded permafrost offshore. Mesoscale numerical calculations (10^1 to 10^2 m, thousands of years) were employed to develop and solve the coupled heat diffusion and salt transport equations including phase change effects. Model soil parameters were constrained by borehole data, and the impact of a variety of influences during the transgression was tested in modelling studies. In addition, two inversion schemes (particle swarm optimization and a least-square method) were used to reconstruct temperature histories for the past 200-300 years in the Laptev Sea region in Siberia from two permafrost borehole temperature records. These data were evaluated against larger scale reconstructions from the region. It was found (I) that peaks in spectral ratios modelled for three-layer, one-dimensional systems corresponded with thaw depths. Around Muostakh Island in the central Laptev Sea seismic receivers were deployed on the seabed. Derived depths of the ice-bonded permafrost table were between 3.7-20.7 m ± 15 \%, increasing with distance from the coast. (II) Temperatures modelled during the transition to subsea permafrost resembled isothermal conditions after about 2000 years of inundation at Cape Mamontov Klyk, consistent with observations from offshore boreholes. Stratigraphic scenarios showed that salt distribution and infiltration had a large impact on the ice saturation in the sediments. Three key factors were identified that, when changed, shifted the modelled permafrost thaw depth most strongly: bottom water temperatures, shoreline retreat rate and initial temperature before inundation. Salt transport based on diffusion and contribution from arbitrary density-driven mechanisms only accounted for about 50 \% of observed thaw depths at offshore sites hundreds to thousands of years after inundation. This bias was found consistently at all three sites in the Laptev Sea region. (III) In the temperature reconstructions, distinct differences in the local temperature histories between the western Laptev Sea and the Lena Delta sites were recognized, such as a transition to warmer temperatures a century later in the western Laptev Sea as well as a peak in warming three decades later. The local permafrost surface temperature history at Sardakh Island in the Lena Delta was reminiscent of the circum-Arctic regional average trends. However, Mamontov Klyk in the western Laptev Sea was consistent to Arctic trends only in the most recent decade and was more similar to northern hemispheric mean trends. Both sites were consistent with a rapid synoptic recent warming. In conclusion, the consistency between modelled response, expected permafrost distribution, and observational data suggests that the passive seismic method is promising for the determination of the thickness of unfrozen sediment on the continental Arctic shelf. The quantified gap between currently modelled and observed thaw depths means that the impact of degradation on climate forcing, ecosystems, and infrastructure is larger than current models predict. This discrepancy suggests the importance of further mechanisms of salt penetration and thaw that have not been considered - either pre-inundation or post-inundation, or both. In addition, any meaningful modelling of subsea permafrost would have to constrain the identified key factors and their regional differences well. The shallow permafrost boreholes provide missing well-resolved short-scale temperature information in the coastal permafrost tundra of the Arctic. As local differences from circum-Arctic reconstructions, such as later warming and higher warming magnitude, were shown to exist in this region, these results provide a basis for local surface temperature record parameterization of climate and, in particular, permafrost models. The results of this work bring us one step further to understanding the full picture of the transition from terrestrial to subsea permafrost.}, language = {en} } @phdthesis{Lefebvre2019, author = {Lefebvre, Marie G.}, title = {Two stages of skarn formation - two tin enrichments}, doi = {10.25932/publishup-42717}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427178}, school = {Universit{\"a}t Potsdam}, pages = {87}, year = {2019}, abstract = {Skarn deposits are found on every continents and were formed at different times from Precambrian to Tertiary. Typically, the formation of a skarn is induced by a granitic intrusion in carbonates-rich sedimentary rocks. During contact metamorphism, fluids derived from the granite interact with the sedimentary host rocks, which results in the formation of calc-silicate minerals at the expense of carbonates. Those newly formed minerals generally develop in a metamorphic zoned aureole with garnet in the proximal and pyroxene in the distal zone. Ore elements contained in magmatic fluids are precipitated due to the change in fluid composition. The temperature decrease of the entire system, due to the cooling of magmatic fluids and the entering of meteoric water, allows retrogression of some prograde minerals. The H{\"a}mmerlein skarn deposit has a multi-stage history with a skarn formation during regional metamorphism and a retrogression of primary skarn minerals during the granitic intrusion. Tin was mobilized during both events. The 340 Ma old tin-bearing skarn minerals show that tin was present in sediments before the granite intrusion, and that the first Sn enrichment occurred during the skarn formation by regional metamorphism fluids. In a second step at ca. 320 Ma, tin-bearing fluids were produced with the intrusion of the Eibenstock granite. Tin, which has been added by the granite and remobilized from skarn calc-silicates, precipitated as cassiterite. Compared to clay or marl, the skarn is enriched in Sn, W, In, Zn, and Cu. These metals have been supplied during both regional metamorphism and granite emplacement. In addition, the several isotopic and chemical data of skarn samples show that the granite selectively added elements such as Sn, and that there was no visible granitic contribution to the sedimentary signature of the skarn The example of H{\"a}mmerlein shows that it is possible to form a tin-rich skarn without associated granite when tin has already been transported from tin-bearing sediments during regional metamorphism by aqueous metamorphic fluids. These skarns are economically not interesting if tin is only contained in the skarn minerals. Later alteration of the skarn (the heat and fluid source is not necessarily a granite), however, can lead to the formation of secondary cassiterite (SnO2), with which the skarn can become economically highly interesting.}, language = {en} } @phdthesis{Liu2019, author = {Liu, Jiabo}, title = {Dynamics of the geomagnetic field during the last glacial}, doi = {10.25932/publishup-42946}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429461}, school = {Universit{\"a}t Potsdam}, pages = {xv, 158}, year = {2019}, abstract = {Geomagnetic paleosecular variations (PSVs) are an expression of geodynamo processes inside the Earth's liquid outer core. These paleomagnetic time series provide insights into the properties of the Earth's magnetic field, from normal behavior with a dominating dipolar geometry, over field crises, such as pronounced intensity lows and geomagnetic excursions with a distorted field geometry, to the complete reversal of the dominating dipole contribution. Particularly, long-term high-resolution and high-quality PSV time series are needed for properly reconstructing the higher frequency components in the spectrum of geomagnetic field variations and for a better understanding of the effects of smoothing during the recording of such paleomagnetic records by sedimentary archives. In this doctorate study, full vector paleomagnetic records were derived from 16 sediment cores recovered from the southeastern Black Sea. Age models are based on radiocarbon dating and correlations of warming/cooling cycles monitored by high-resolution X-ray fluorescence (XRF) elementary ratios as well as ice-rafted debris (IRD) in Black Sea sediments to the sequence of 'Dansgaard-Oeschger' (DO) events defined from Greenland ice core oxygen isotope stratigraphy. In order to identify the carriers of magnetization in Black Sea sediments, core MSM33-55-1 recovered from the southeast Black Sea was subjected to detailed rock magnetic and electron microscopy investigations. The younger part of core MSM33-55-1 was continuously deposited since 41 ka. Before 17.5 ka, the magnetic minerals were dominated by a mixture of greigite (Fe3S4) and titanomagnetite (Fe3-xTixO4) in samples with SIRM/κLF >10 kAm-1, or exclusively by titanomagnetite in samples with SIRM/κLF ≤10 kAm-1. It was found that greigite is generally present as crustal aggregates in locally reducing micro-environments. From 17.5 ka to 8.3 ka, the dominant magnetic mineral in this transition phase was changing from greigite (17.5 - ~10.0 ka) to probably silicate-hosted titanomagnetite (~10.0 - 8.3 ka). After 8.3 ka, the anoxic Black Sea was a favorable environment for the formation of non-magnetic pyrite (FeS2) framboids. Aiming to avoid compromising of paleomagnetic data by erroneous directions carried by greigite, paleomagnetic data from samples with SIRM/κLF >10 kAm-1, shown to contain greigite by various methods, were removed from obtained records. Consequently, full vector paleomagnetic records, comprising directional data and relative paleointensity (rPI), were derived only from samples with SIRM/κLF ≤10 kAm-1 from 16 Black Sea sediment cores. The obtained data sets were used to create a stack covering the time window between 68.9 and 14.5 ka with temporal resolution between 40 and 100 years, depending on sedimentation rates. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I=61°, D=0°) still can not yet be termed as 'excursional', since latitudes of corresponding VGPs only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of the Norwegian-Greenland Sea excursion found at several sites much further North in Arctic marine sediments between 69°N and 81°N. At about 34.5 ka, the Mono Lake excursion is evidenced in the stacked Black Sea PSV record by both a rPI minimum and directional shifts. Associated VGPs from stacked Black Sea data migrated from Alaska, via central Asia and the Tibetan Plateau, to Greenland, performing a clockwise loop. This agrees with data recorded in the Wilson Creek Formation, USA., and Arctic sediment core PS2644-5 from the Iceland Sea, suggesting a dominant dipole field. On the other hand, the Auckland lava flows, New Zealand, the Summer Lake, USA., and Arctic sediment core from ODP Site-919 yield distinct VGPs located in the central Pacific Ocean due to a presumably non-dipole (multi-pole) field configuration. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in rPI, is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60° N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean. In addition to the Mono Lake and the Norwegian-Greenland Sea excursions, the Laschamp excursion was evidenced in the Black Sea PSV record with the lowest paleointensities at about 41.6 ka and a short-term (~500 years) full reversal centered at 41 ka. These excursions are further evidenced by an abnormal PSV index, though only the Laschamp and the Mono Lake excursions exhibit excursional VGP positions. The stacked Black Sea paleomagnetic record was also converted into one component parallel to the direction expected from a geocentric axial dipole (GAD) and two components perpendicular to it, representing only non-GAD components of the geomagnetic field. The Laschamp and the Norwegian-Greenland Sea excursions are characterized by extremely low GAD components, while the Mono Lake excursion is marked by large non-GAD contributions. Notably, negative values of the GAD component, indicating a fully reversed geomagnetic field, are observed only during the Laschamp excursion. In summary, this doctoral thesis reconstructed high-resolution and high-fidelity PSV records from SE Black Sea sediments. The obtained record comprises three geomagnetic excursions, the Norwegian-Greenland Sea excursion, the Laschamp excursion, and the Mono Lake excursion. They are characterized by abnormal secular variations of different amplitudes centered at about 64.5 ka, 41.0 ka and 34.5 ka, respectively. In addition, the obtained PSV record from the Black Sea do not provide evidence for the postulated 'Hilina Pali excursion' at about 18.5 ka. Anyway, the obtained Black Sea paleomagnetic record, covering field fluctuations from normal secular variations, over excursions, to a short but full reversal, points to a geomagnetic field characterized by a large dynamic range in intensity and a highly variable superposition of dipole and non-dipole contributions from the geodynamo during the past 68.9 to 14.5 ka.}, language = {en} } @phdthesis{Pohlenz2019, author = {Pohlenz, Julia}, title = {Structural insights into sodium-rich silicate - carbonate glasses and melts}, doi = {10.25932/publishup-42382}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423826}, school = {Universit{\"a}t Potsdam}, pages = {XXII, 117}, year = {2019}, abstract = {Carbonate-rich silicate and carbonate melts play a crucial role in deep Earth magmatic processes and their melt structure is a key parameter, as it controls physical and chemical properties. Carbonate-rich melts can be strongly enriched in geochemically important trace elements. The structural incorporation mechanisms of these elements are difficult to study because such melts generally cannot be quenched to glasses, which are usually employed for structural investigations. This thesis investigates the influence of CO2 on the local environments of trace elements contained in silicate glasses with variable CO2 concentrations as well as in silicate and carbonate melts. The compositions studied include sodium-rich peralkaline silicate melts and glasses and carbonate melts similar to those occurring naturally at Oldoinyo Lengai volcano, Tanzania. The local environments of the three elements yttrium (Y), lanthanum (La) and strontium (Sr) were investigated in synthesized glasses and melts using X-ray absorption fine structure (XAFS) spectroscopy. Especially extended X-ray absorption fine structure spectroscopy (EXAFS) provides element specific information on local structure, such as bond lengths, coordination numbers and the degree of disorder. To cope with the enhanced structural disorder present in glasses and melts, EXAFS analysis was based on fitting approaches using an asymmetric distribution function as well as a correlation model according to bond valence theory. Firstly, silicate glasses quenched from high pressure/temperature melts with up to 7.6 wt \% CO2 were investigated. In strongly and extremely peralkaline glasses the local structure of Y is unaffected by the CO2 content (with oxygen bond lengths of ~ 2.29 {\AA}). Contrary, the bond lengths for Sr-O and La-O increase with increasing CO2 content in the strongly peralkaline glasses from ~ 2.53 to ~ 2.57 {\AA} and from ~ 2.52 to ~ 2.54 {\AA}, respectively, while they remain constant in extremely peralkaline glasses (at ~ 2.55 {\AA} and 2.54 {\AA}, respectively). Furthermore, silicate and unquenchable carbonate melts were investigated in-situ at high pressure/temperature conditions (2.2 to 2.6 GPa, 1200 to 1500 °C) using a Paris-Edinburgh press. A novel design of the pressure medium assembly for this press was developed, which features increased mechanical stability as well as enhanced transmittance at relevant energies to allow for low content element EXAFS in transmission. Compared to glasses the bond lengths of Y-O, La-O and Sr-O are elongated by up to + 3 \% in the melt and exhibit higher asymmetric pair distributions. For all investigated silicate melt compositions Y-O bond lengths were found constant at ~ 2.37 {\AA}, while in the carbonate melt the Y-O length increases slightly to 2.41 {\AA}. The La-O bond lengths in turn, increase systematically over the whole silicate - carbonate melt joint from 2.55 to 2.60 {\AA}. Sr-O bond lengths in melts increase from ~ 2.60 to 2.64 {\AA} from pure silicate to silicate-bearing carbonate composition with constant elevated bond length within the carbonate region. For comparison and deeper insight, glass and melt structures of Y and Sr bearing sodium-rich silicate to carbonate compositions were simulated in an explorative ab initio molecular dynamics (MD) study. The simulations confirm observed patterns of CO2-dependent local changes around Y and Sr and additionally provide further insights into detailed incorporation mechanisms of the trace elements and CO2. Principle findings include that in sodium-rich silicate compositions carbon either is mainly incorporated as a free carbonate-group or shares one oxygen with a network former (Si or [4]Al) to form a non-bridging carbonate. Of minor importance are bridging carbonates between two network formers. Here, a clear preference for two [4]Al as adjacent network formers occurs, compared to what a statistical distribution would suggest. In C-bearing silicate melts minor amounts of molecular CO2 are present, which is almost totally dissolved as carbonate in the quenched glasses. The combination of experiment and simulation provides extraordinary insights into glass and melt structures. The new data is interpreted on the basis of bond valence theory and is used to deduce potential mechanisms for structural incorporation of investigated elements, which allow for prediction on their partitioning behavior in natural melts. Furthermore, it provides unique insights into the dissolution mechanisms of CO2 in silicate melts and into the carbonate melt structure. For the latter, a structural model is suggested, which is based on planar CO3-groups linking 7- to 9-fold cation polyhedra, in accordance to structural units as found in the Na-Ca carbonate nyerereite. Ultimately, the outcome of this study contributes to rationalize the unique physical properties and geological phenomena related to carbonated silicate-carbonate melts.}, language = {en} } @phdthesis{Hoffmann2019, author = {Hoffmann, Mathias}, title = {Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421302}, school = {Universit{\"a}t Potsdam}, pages = {xx, 204, xxix}, year = {2019}, abstract = {The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.}, language = {en} } @phdthesis{Fuchs2019, author = {Fuchs, Matthias}, title = {Soil organic carbon and nitrogen pools in thermokarst-affected permafrost terrain}, school = {Universit{\"a}t Potsdam}, pages = {203}, year = {2019}, language = {en} } @phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} } @phdthesis{Coch2019, author = {Coch, Caroline}, title = {The changing Arctic freshwater system}, school = {Universit{\"a}t Potsdam}, pages = {xi, 113, xxxvii}, year = {2019}, language = {en} } @phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} } @phdthesis{Wolf2019, author = {Wolf, Mathias Johannes}, title = {The role of partial melting on trace element and isotope systematics of granitic melts}, doi = {10.25932/publishup-42370}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423702}, school = {Universit{\"a}t Potsdam}, pages = {iv, 129}, year = {2019}, abstract = {Partial melting is a first order process for the chemical differentiation of the crust (Vielzeuf et al., 1990). Redistribution of chemical elements during melt generation crucially influences the composition of the lower and upper crust and provides a mechanism to concentrate and transport chemical elements that may also be of economic interest. Understanding of the diverse processes and their controlling factors is therefore not only of scientific interest but also of high economic importance to cover the demand for rare metals. The redistribution of major and trace elements during partial melting represents a central step for the understanding how granite-bound mineralization develops (Hedenquist and Lowenstern, 1994). The partial melt generation and mobilization of ore elements (e.g. Sn, W, Nb, Ta) into the melt depends on the composition of the sedimentary source and melting conditions. Distinct source rocks have different compositions reflecting their deposition and alteration histories. This specific chemical "memory" results in different mineral assemblages and melting reactions for different protolith compositions during prograde metamorphism (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). These factors do not only exert an important influence on the distribution of chemical elements during melt generation, they also influence the volume of melt that is produced, extraction of the melt from its source, and its ascent through the crust (Le Breton and Thompson, 1988). On a larger scale, protolith distribution and chemical alteration (weathering), prograde metamorphism with partial melting, melt extraction, and granite emplacement are ultimately depending on a (plate-)tectonic control (Romer and Kroner, 2016). Comprehension of the individual stages and their interaction is crucial in understanding how granite-related mineralization forms, thereby allowing estimation of the mineralization potential of certain areas. Partial melting also influences the isotope systematics of melt and restite. Radiogenic and stable isotopes of magmatic rocks are commonly used to trace back the source of intrusions or to quantify mixing of magmas from different sources with distinct isotopic signatures (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). These applications are based on the fundamental requirement that the isotopic signature in the melt reflects that of the bulk source from which it is derived. Different minerals in a protolith may have isotopic compositions of radiogenic isotopes that deviate from their whole rock signature (Ayres and Harris, 1997; Knesel and Davidson, 2002). In particular, old minerals with a distinct parent-to-daughter (P/D) ratio are expected to have a specific radiogenic isotope signature. As the partial melting reaction only involves selective phases in a protolith, the isotopic signature of the melt reflects that of the minerals involved in the melting reaction and, therefore, should be different from the bulk source signature. Similar considerations hold true for stable isotopes.}, language = {en} } @phdthesis{Herrmann2019, author = {Herrmann, Johannes}, title = {The mechanical behavior of shales}, doi = {10.25932/publishup-42968}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429683}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 156}, year = {2019}, abstract = {The thesis comprises three experimental studies, which were carried out to unravel the short- as well as the long-term mechanical properties of shale rocks. Short-term mechanical properties such as compressive strength and Young's modulus were taken from recorded stress-strain curves of constant strain rate tests. Long-term mechanical properties are represented by the time- dependent creep behavior of shales. This was obtained from constant stress experiments, where the test duration ranged from a couple minutes up to two weeks. A profound knowledge of the mechanical behavior of shales is crucial to reliably estimate the potential of a shale reservoir for an economical and sustainable extraction of hydrocarbons (HC). In addition, healing of clay-rich forming cap rocks involving creep and compaction is important for underground storage of carbon dioxide and nuclear waste. Chapter 1 introduces general aspects of the research topic at hand and highlights the motivation for conducting this study. At present, a shift from energy recovered from conventional resources e.g., coal towards energy provided by renewable resources such as wind or water is a big challenge. Gas recovered from unconventional reservoirs (shale plays) is considered a potential bridge technology. In Chapter 2, short-term mechanical properties of two European mature shale rocks are presented, which were determined from constant strain rate experiments performed at ambient and in situ deformation conditions (confining pressure, pc ≤ 100 MPa, temperature, T ≤ 125 °C, representing pc, T - conditions at < 4 km depth) using a Paterson- type gas deformation apparatus. The investigated shales were mainly from drill core material of Posidonia (Germany) shale and weathered material of Bowland (United Kingdom) shale. The results are compared with mechanical properties of North American shales. Triaxial compression tests performed perpendicular to bedding revealed semibrittle deformation behavior of Posidonia shale with pronounced inelastic deformation. This is in contrast to Bowland shale samples that deformed brittle and displayed predominantly elastic deformation. The static Young's modulus, E, and triaxial compressive strength, σTCS, determined from recorded stress-strain curves strongly depended on the applied confining pressure and sample composition, whereas the influence of temperature and strain rate on E and σTCS was minor. Shales with larger amounts of weak minerals (clay, mica, total organic carbon) yielded decreasing E and σTCS. This may be related to a shift from deformation supported by a load-bearing framework of hard phases (e.g., quartz) towards deformation of interconnected weak minerals, particularly for higher fractions of about 25 - 30 vol\% weak phases. Comparing mechanical properties determined at reservoir conditions with mechanical data applying effective medium theories revealed that E and σTCS of Posidonia and Bowland shale are close to the lower (Reuss) bound. Brittleness B is often quoted as a measure indicating the response of a shale formation to stimulation and economic production. The brittleness, B, of Posidonia and Bowland shale, estimated from E, is in good agreement with the experimental results. This correlation may be useful to predict B from sonic logs, from which the (dynamic) Young's modulus can be retrieved. Chapter 3 presents a study of the long-term creep properties of an immature Posidonia shale. Constant stress experiments (σ = const.) were performed at elevated confining pressures (pc = 50 - 200 MPa) and temperatures (T = 50 - 200 °C) to simulate reservoir pc, T - conditions. The Posidonia shale samples were acquired from a quarry in South Germany. At stresses below ≈ 84 \% compressive strength of Posidonia shale, at high temperature and low confining pressure, samples showed pronounced transient (primary) creep with high deformation rates in the semibrittle regime. Sample deformation was mainly accommodated by creep of weak sample constituents and pore space reduction. An empirical power law relation between strain and time, which also accounts for the influence of pc, T and σ on creep strain was formulated to describe the primary creep phase. Extrapolation of the results to a creep period of several years, which is the typical time interval for a large production decline, suggest that fracture closure is unlikely at low stresses. At high stresses as expected for example at the contact between the fracture surfaces and proppants added during stimulation measures, subcritical crack growth may lead to secondary and tertiary creep. An empirical power law is suggested to describe secondary creep of shale rocks as a function of stress, pressure and temperature. The predicted closure rates agree with typical production decline curves recorded during the extraction of hydrocarbons. At the investigated conditions, the creep behavior of Posidonia shale was found to correlate with brittleness, calculated from sample composition. In Chapter 4 the creep properties of mature Posidonia and Bowland shales are presented. The observed long-term creep behavior is compared to the short-term behavior determined in Chapter 2. Creep experiments were performed at simulated reservoir conditions of pc = 50 - 115 MPa and T = 75 - 150 °C. Similar to the mechanical response of immature Posidonia shale samples investigated in Chapter 3, creep strain rates of mature Bowland and Posidonia shales were enhanced with increasing stress and temperature and decreasing confining pressures. Depending on applied deformation conditions, samples displayed either only a primary (decelerating) or in addition also a secondary (quasi-steady state) and subsequently a tertiary (accelerating) creep phase before failure. At the same deformation conditions, creep strain of Posidonia shale, which is rich in weak constituents, is tremendously higher than of quartz-rich Bowland shale. Typically, primary creep strain is again mostly accommodated by deformation of weak minerals and local pore space reduction. At the onset of tertiary creep most of the deformation was accommodated by micro crack growth. A power law was used to characterize the primary creep phase of Posidonia and Bowland shale. Primary creep strain of shale rocks is inversely correlated to triaxial compressive strength and brittleness, as described in Chapter 2. Chapter 5 provides a synthesis of the experimental findings and summarizes the major results of the studies presented in Chapters 2 - 4 and potential applications in the Exploration \& Production industry. Chapter 6 gives a brief outlook on potential future experimental research that would help to further improve our understanding of processes leading to fracture closure involving proppant embedment in unconventional shale gas reservoirs. Such insights may allow to improve stimulation techniques aimed at maintaining economical extraction of hydrocarbons over several years.}, language = {en} } @phdthesis{Kriegerowski2019, author = {Kriegerowski, Marius}, title = {Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms}, doi = {10.25932/publishup-44404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444040}, school = {Universit{\"a}t Potsdam}, pages = {xv, 83}, year = {2019}, abstract = {Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network's first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nov{\´y} Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering.}, language = {en} } @phdthesis{AlHalbouni2019, author = {Al-Halbouni, Djamil}, title = {Photogrammetry and distinct element geomechanical modelling of sinkholes and large-scale karstic depressions}, doi = {10.25932/publishup-43215}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432159}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {Sinkholes and depressions are typical landforms of karst regions. They pose a considerable natural hazard to infrastructure, agriculture, economy and human life in affected areas worldwide. The physio-chemical processes of sinkholes and depression formation are manifold, ranging from dissolution and material erosion in the subsurface to mechanical subsidence/failure of the overburden. This thesis addresses the mechanisms leading to the development of sinkholes and depressions by using complementary methods: remote sensing, distinct element modelling and near-surface geophysics. In the first part, detailed information about the (hydro)-geological background, ground structures, morphologies and spatio-temporal development of sinkholes and depressions at a very active karst area at the Dead Sea are derived from satellite image analysis, photogrammetry and geologic field surveys. There, clusters of an increasing number of sinkholes have been developing since the 1980s within large-scale depressions and are distributed over different kinds of surface materials: clayey mud, sandy-gravel alluvium and lacustrine evaporites (salt). The morphology of sinkholes differs depending in which material they form: Sinkholes in sandy-gravel alluvium and salt are generally deeper and narrower than sinkholes in the interbedded evaporite and mud deposits. From repeated aerial surveys, collapse precursory features like small-scale subsidence, individual holes and cracks are identified in all materials. The analysis sheds light on the ongoing hazardous subsidence process, which is driven by the base-level fall of the Dead Sea and by the dynamic formation of subsurface water channels. In the second part of this thesis, a novel, 2D distinct element geomechanical modelling approach with the software PFC2D-V5 to simulating individual and multiple cavity growth and sinkhole and large-scale depression development is presented. The approach involves a stepwise material removal technique in void spaces of arbitrarily shaped geometries and is benchmarked by analytical and boundary element method solutions for circular cavities. Simulated compression and tension tests are used to calibrate model parameters with bulk rock properties for the materials of the field site. The simulations show that cavity and sinkhole evolution is controlled by material strength of both overburden and cavity host material, the depth and relative speed of the cavity growth and the developed stress pattern in the subsurface. Major findings are: (1) A progressively deepening differential subrosion with variable growth speed yields a more fragmented stress pattern with stress interaction between the cavities. It favours multiple sinkhole collapses and nesting within large-scale depressions. (2) Low-strength materials do not support large cavities in the material removal zone, and subsidence is mainly characterised by gradual sagging into the material removal zone with synclinal bending. (3) High-strength materials support large cavity formation, leading to sinkhole formation by sudden collapse of the overburden. (4) Large-scale depression formation happens either by coalescence of collapsing holes, block-wise brittle failure, or gradual sagging and lateral widening. The distinct element based approach is compared to results from remote sensing and geophysics at the field site. The numerical simulation outcomes are generally in good agreement with derived morphometrics, documented surface and subsurface structures as well as seismic velocities. Complementary findings on the subrosion process are provided from electric and seismic measurements in the area. Based on the novel combination of methods in this thesis, a generic model of karst landform evolution with focus on sinkhole and depression formation is developed. A deepening subrosion system related to preferential flow paths evolves and creates void spaces and subsurface conduits. This subsequently leads to hazardous subsidence, and the formation of sinkholes within large-scale depressions. Finally, a monitoring system for shallow natural hazard phenomena consisting of geodetic and geophysical observations is proposed for similarly affected areas.}, language = {en} } @phdthesis{Nikkhoo2019, author = {Nikkhoo, Mehdi}, title = {Analytical and numerical elastic dislocation models of volcano deformation processes}, doi = {10.25932/publishup-42972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429720}, school = {Universit{\"a}t Potsdam}, pages = {x, 175}, year = {2019}, abstract = {The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth's interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth's surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013-2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volc{\´a}n de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano's lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tend{\"u}rek volcano has been investigated through modelling displacement time series over the 2003-2010 time period. As the fifth example, the deformation sources associated with North Korea's underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations.}, language = {en} } @phdthesis{Laudan2019, author = {Laudan, Jonas}, title = {Changing susceptibility of flood-prone residents in Germany}, doi = {10.25932/publishup-43442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434421}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2019}, abstract = {Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany.}, language = {en} } @phdthesis{Codeco2019, author = {Codeco, Marta Sofia Ferreira}, title = {Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal}, doi = {10.25932/publishup-42975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429752}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 232}, year = {2019}, abstract = {This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation.}, language = {en} } @phdthesis{vonSpecht2019, author = {von Specht, Sebastian}, title = {Likelihood - based optimization in strong-motion seismology}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2019}, language = {en} } @phdthesis{Korges2019, author = {Korges, Maximilian}, title = {Constraining the hydrology of intrusion-related ore deposits with fluid inclusions and numerical modeling}, doi = {10.25932/publishup-43484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434843}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 99}, year = {2019}, abstract = {Magmatic-hydrothermal fluids are responsible for numerous mineralization types, including porphyry copper and granite related tin-tungsten (Sn-W) deposits. Ore formation is dependent on various factors, including, the pressure and temperature regime of the intrusions, the chemical composition of the magma and hydrothermal fluids, and fluid rock interaction during the ascent. Fluid inclusions have potential to provide direct information on the temperature, salinity, pressure and chemical composition of fluids responsible for ore formation. Numerical modeling allows the parametrization of pluton features that cannot be analyzed directly via geological observations. Microthermometry of fluid inclusions from the Zinnwald Sn-W deposit, Erzgebirge, Germany / Czech Republic, provide evidence that the greisen mineralization is associated with a low salinity (2-10 wt.\% NaCl eq.) fluid with homogenization temperatures between 350°C and 400°C. Quartzes from numerous veins are host to inclusions with the same temperatures and salinities, whereas cassiterite- and wolframite-hosted assemblages with slightly lower temperatures (around 350°C) and higher salinities (ca. 15 wt. NaCl eq.). Further, rare quartz samples contained boiling assemblages consisting of coexisting brine and vapor phases. The formation of ore minerals within the greisen is driven by invasive fluid-rock interaction, resulting in the loss of complexing agents (Cl-) leading to precipitation of cassiterite. The fluid inclusion record in the veins suggests boiling as the main reason for cassiterite and wolframite mineralization. Ore and coexisting gangue minerals hosted different types of fluid inclusions where the beginning boiling processes are solely preserved by the ore minerals emphasizing the importance of microthermometry in ore minerals. Further, the study indicates that boiling as a precipitation mechanism can only occur in mineralization related to shallow intrusions whereas deeper plutons prevent the fluid from boiling and can therefore form tungsten mineralization in the distal regions. The tin mineralization in the H{\"a}mmerlein deposit, Erzgebirge, Germany, occurs within a skarn horizon and the underlying schist. Cassiterite within the skarn contains highly saline (30-50 wt\% NaCl eq.) fluid inclusions, with homogenization temperatures up to 500°C, whereas cassiterites from the schist and additional greisen samples contain inclusions of lower salinity (~5 wt\% NaCl eq.) and temperature (between 350 and 400°C). Inclusions in the gangue minerals (quartz, fluorite) preserve homogenization temperatures below 350°C and sphalerite showed the lowest homogenization temperatures (ca. 200°C) whereby all minerals (cassiterite from schist and greisen, gangue minerals and sphalerite) show similar salinity ranges (2-5 wt\% NaCl eq.). Similar trace element contents and linear trends in the chemistry of the inclusions suggest a common source fluid. The inclusion record in the H{\"a}mmerlein deposit documents an early exsolution of hot brines from the underlying granite which is responsible for the mineralization hosted by the skarn. Cassiterites in schist and greisen are mainly forming due to fluid-rock interaction at lower temperatures. The low temperature inclusions documented in the sphalerite mineralization as well as their generally low trace element composition in comparison to the other minerals suggests that their formation was induced by mixing with meteoric fluids. Numerical simulations of magma chambers and overlying copper distribution document the importance of incremental growth by sills. We analyzed the cooling behavior at variable injection intervals as well as sill thicknesses. The models suggest that magma accumulation requires volumetric injection rates of at least 4 x 10-4 km³/y. These injection rates are further needed to form a stable magmatic-hydrothermal fluid plume above the magma chamber to ensure a constant copper precipitation and enrichment within a confined location in order to form high-grade ore shells within a narrow geological timeframe between 50 and 100 kyrs as suggested for porphyry copper deposits. The highest copper enrichment can be found in regions with steep temperature gradients, typical of regions where the magmatic-hydrothermal fluid meets the cooler ambient fluids.}, language = {en} } @phdthesis{Ghani2019, author = {Ghani, Humaad}, title = {Structural evolution of the Kohat and Potwar fold and thrust belts of Pakistan}, doi = {10.25932/publishup-44077}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440775}, school = {Universit{\"a}t Potsdam}, pages = {viii, 121}, year = {2019}, abstract = {Fold and thrust belts are characteristic features of collisional orogen that grow laterally through time by deforming the upper crust in response to stresses caused by convergence. The deformation propagation in the upper crust is accommodated by shortening along major folds and thrusts. The formation of these structures is influenced by the mechanical strength of d{\´e}collements, basement architecture, presence of preexisting structures and taper of the wedge. These factors control not only the sequence of deformation but also cause differences in the structural style. The Himalayan fold and thrust belt exhibits significant differences in the structural style from east to west. The external zone of the Himalayan fold and thrust belt, also called the Subhimalaya, has been extensively studied to understand the temporal development and differences in the structural style in Bhutan, Nepal and India; however, the Subhimalaya in Pakistan remains poorly studied. The Kohat and Potwar fold and thrust belts (herein called Kohat and Potwar) represent the Subhimalaya in Pakistan. The Main Boundary Thrust (MBT) marks the northern boundary of both Kohat and Potwar, showing that these belts are genetically linked to foreland-vergent deformation within the Himalayan orogen, despite the pronounced contrast in structural style. This contrast becomes more pronounced toward south, where the active strike-slip Kalabagh Fault Zone links with the Kohat and Potwar range fronts, known as the Surghar Range and the Salt Range, respectively. The Surghar and Salt Ranges developed above the Surghar Thrust (SGT) and Main Frontal Thrust (MFT). In order to understand the structural style and spatiotemporal development of the major structures in Kohat and Potwar, I have used structural modeling and low temperature thermochronolgy methods in this study. The structural modeling is based on construction of balanced cross-sections by integrating surface geology, seismic reflection profiles and well data. In order to constrain the timing and magnitude of exhumation, I used apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The results obtained from both methods are combined to document the Paleozoic to Recent history of Kohat and Potwar. The results of this research suggest two major events in the deformation history. The first major deformation event is related to Late Paleozoic rifting associated with the development of the Neo-Tethys Ocean. The second major deformation event is related to the Late Miocene to Pliocene development of the Himalayan fold and thrust belt in the Kohat and Potwar. The Late Paleozoic rifting is deciphered by inverse thermal modelling of detrital AFT and AHe ages from the Salt Range. The process of rifting in this area created normal faulting that resulted in the exhumation/erosion of Early to Middle Paleozoic strata, forming a major unconformity between Cambrian and Permian strata that is exposed today in the Salt Range. The normal faults formed in Late Paleozoic time played an important role in localizing the Miocene-Pliocene deformation in this area. The combination of structural reconstructions and thermochronologic data suggest that deformation initiated at 15±2 Ma on the SGT ramp in the southern part of Kohat. The early movement on the SGT accreted the foreland into the Kohat deforming wedge, forming the range front. The development of the MBT at 12±2 Ma formed the northern boundary of Kohat and Potwar. Deformation propagated south of the MBT in the Kohat on double d{\´e}collements and in the Potwar on a single basal d{\´e}collement. The double d{\´e}collement in the Kohat adopted an active roof-thrust deformation style that resulted in the disharmonic structural style in the upper and lower parts of the stratigraphic section. Incremental shortening resulted in the development of duplexes in the subsurface between two d{\´e}collements and imbrication above the roof thrust. Tectonic thickening caused by duplexes resulted in cooling and exhumation above the roof thrust by removal of a thick sequence of molasse strata. The structural modelling shows that the ramps on which duplexes formed in Kohat continue as tip lines of fault propagation folds in the Potwar. The absence of a double d{\´e}collement in the Potwar resulted in the preservation of a thick sequence of molasse strata there. The temporal data suggest that deformation propagated in-sequence from ~ 8 to 3 Ma in the northern part of Kohat and Potwar; however, internal deformation in the Kohat was more intense, probably required for maintaining a critical taper after a significant load was removed above the upper d{\´e}collement. In the southern part of Potwar, a steeper basement slope (β≥3°) and the presence of salt at the base of the stratigraphic section allowed for the complete preservation of the stratigraphic wedge, showcased by very little internal deformation. Activation of the MFT at ~4 Ma allowed the Salt Range to become the range front of the Potwar. The removal of a large amount of molasse strata above the MFT ramp enhanced the role of salt in shaping the structural style of the Salt Range and Kalabagh Fault Zone. Salt accumulation and migration resulted in the formation of normal faults in both areas. Salt migration in the Kalabagh fault zone has triggered out-of-sequence movement on ramps in the Kohat. The amount of shortening calculated between the MBT and the SGT in Kohat is 75±5 km and between the MBT and the MFT in Potwar is 65±5 km. A comparable amount of shortening is accommodated in the Kohat and Potwar despite their different widths: 70 km Kohat and 150 km Potwar. In summary, this research suggests that deformation switched between different structures during the last ~15 Ma through different modes of fault propagation, resulting in different structural styles and the out-of-sequence development of Kohat and Potwar.}, language = {en} } @phdthesis{Stettner2018, author = {Stettner, Samuel}, title = {Exploring the seasonality of rapid Arctic changes from space}, doi = {10.25932/publishup-42578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425783}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 132}, year = {2018}, abstract = {Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.}, language = {en} } @phdthesis{Stolle2018, author = {Stolle, Amelie}, title = {Catastrophic Sediment Pulses in the Pokhara Valley, Nepal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413341}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 173}, year = {2018}, abstract = {Fluvial terraces, floodplains, and alluvial fans are the main landforms to store sediments and to decouple hillslopes from eroding mountain rivers. Such low-relief landforms are also preferred locations for humans to settle in otherwise steep and poorly accessible terrain. Abundant water and sediment as essential sources for buildings and infrastructure make these areas amenable places to live at. Yet valley floors are also prone to rare and catastrophic sedimentation that can overload river systems by abruptly increasing the volume of sediment supply, thus causing massive floodplain aggradation, lateral channel instability, and increased flooding. Some valley-fill sediments should thus record these catastrophic sediment pulses, allowing insights into their timing, magnitude, and consequences. This thesis pursues this theme and focuses on a prominent ~150 km2 valley fill in the Pokhara Valley just south of the Annapurna Massif in central Nepal. The Pokhara Valley is conspicuously broad and gentle compared to the surrounding dissected mountain terrain, and is filled with locally more than 70 m of clastic debris. The area's main river, Seti Khola, descends from the Annapurna Sabche Cirque at 3500-4500 m asl down to 900 m asl where it incises into this valley fill. Humans began to settle on this extensive fan surface in the 1750's when the Trans-Himalayan trade route connected the Higher Himalayas, passing Pokhara city, with the subtropical lowlands of the Terai. High and unstable river terraces and steep gorges undermined by fast flowing rivers with highly seasonal (monsoon-driven) discharge, a high earthquake risk, and a growing population make the Pokhara Valley an ideal place to study the recent geological and geomorphic history of its sediments and the implication for natural hazard appraisals. The objective of this thesis is to quantify the timing, the sedimentologic and geomorphic processes as well as the fluvial response to a series of strong sediment pulses. I report diagnostic sedimentary archives, lithofacies of the fan terraces, their geochemical provenance, radiocarbon-age dating and the stratigraphic relationship between them. All these various and independent lines of evidence show consistently that multiple sediment pulses filled the Pokhara Valley in medieval times, most likely in connection with, if not triggered by, strong seismic ground shaking. The geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation tied to the timing of three medieval Himalayan earthquakes in ~1100, 1255, and 1344 AD. Sediment provenance and calibrated radiocarbon-age data are the key to distinguish three individual sediment pulses, as these are not evident from their sedimentology alone. I explore various measures of adjustment and fluvial response of the river system following these massive aggradation pulses. By using proxies such as net volumetric erosion, incision and erosion rates, clast provenance on active river banks, geomorphic markers such as re-exhumed tree trunks in growth position, and knickpoint locations in tributary valleys, I estimate the response of the river network in the Pokhara Valley to earthquake disturbance over several centuries. Estimates of the removed volumes since catastrophic valley filling began, require average net sediment yields of up to 4200 t km-2 yr-1 since, rates that are consistent with those reported for Himalayan rivers. The lithological composition of active channel-bed load differs from that of local bedrock material, confirming that rivers have adjusted 30-50\% depending on data of different tributary catchments, locally incising with rates of 160-220 mm yr-1. In many tributaries to the Seti Khola, most of the contemporary river loads come from a Higher Himalayan source, thus excluding local hillslopes as sources. This imbalance in sediment provenance emphasizes how the medieval sediment pulses must have rapidly traversed up to 70 km downstream to invade the downstream reaches of the tributaries up to 8 km upstream, thereby blocking the local drainage and thus reinforcing, or locally creating new, floodplain lakes still visible in the landscape today. Understanding the formation, origin, mechanism and geomorphic processes of this valley fill is crucial to understand the landscape evolution and response to catastrophic sediment pulses. Several earthquake-triggered long-runout rock-ice avalanches or catastrophic dam burst in the Higher Himalayas are the only plausible mechanisms to explain both the geomorphic and sedimentary legacy that I document here. In any case, the Pokhara Valley was most likely hit by a cascade of extremely rare processes over some two centuries starting in the early 11th century. Nowhere in the Himalayas do we find valley fills of comparable size and equally well documented depositional history, making the Pokhara Valley one of the most extensively dated valley fill in the Himalayas to date. Judging from the growing record of historic Himalayan earthquakes in Nepal that were traced and dated in fault trenches, this thesis shows that sedimentary archives can be used to directly aid reconstructions and predictions of both earthquake triggers and impacts from a sedimentary-response perspective. The knowledge about the timing, evolution, and response of the Pokhara Valley and its river system to earthquake triggered sediment pulses is important to address the seismic and geomorphic risk for the city of Pokhara. This thesis demonstrates how geomorphic evidence on catastrophic valley infill can help to independently verify paleoseismological fault-trench records and may initiate re-thinking on post-seismic hazard assessments in active mountain regions.}, language = {en} } @phdthesis{Rosenwinkel2018, author = {Rosenwinkel, Swenja}, title = {Rock glaciers and natural dams in Central Asia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410386}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 181}, year = {2018}, abstract = {The formation and breaching of natural dammed lakes have formed the landscapes, especially in seismically active high-mountain regions. Dammed lakes pose both, potential water resources, and hazard in case of dam breaching. Central Asia has mostly arid and semi-arid climates. Rock glaciers already store more water than ice-glaciers in some semi-arid regions of the world, but their distribution and advance mechanisms are still under debate in recent research. Their impact on the water availability in Central Asia will likely increase as temperatures rise and glaciers diminish. This thesis provides insight to the relative age distribution of selected Kyrgyz and Kazakh rock glaciers and their single lobes derived from lichenometric dating. The size of roughly 8000 different lichen specimens was used to approximate an exposure age of the underlying debris surface. We showed that rock-glacier movement differs signifcantly on small scales. This has several implications for climatic inferences from rock glaciers. First, reactivation of their lobes does not necessarily point to climatic changes, or at least at out-of-equilibrium conditions. Second, the elevations of rock-glacier toes can no longer be considered as general indicators of the limit of sporadic mountain permafrost as they have been used traditionally. In the mountainous and seismically active region of Central Asia, natural dams, besides rock glaciers, also play a key role in controlling water and sediment infux into river valleys. However, rock glaciers advancing into valleys seem to be capable of infuencing the stream network, to dam rivers, or to impound lakes. This influence has not previously been addressed. We quantitatively explored these controls using a new inventory of 1300 Central Asian rock glaciers. Elevation, potential incoming solar radiation, and the size of rock glaciers and their feeder basins played key roles in predicting dam appearance. Bayesian techniques were used to credibly distinguish between lichen sizes on rock glaciers and their lobes, and to find those parameters of a rock-glacier system that are most credibly expressing the potential to build natural dams. To place these studies in the region's history of natural dams, a combination of dating of former lake levels and outburst flood modelling addresses the history and possible outburst flood hypotheses of the second largest mountain lake of the world, Issyk Kul in Kyrgyzstan. Megafoods from breached earthen or glacial dams were found to be a likely explanation for some of the lake's highly fluctuating water levels. However, our detailed analysis of candidate lake sediments and outburst-flood deposits also showed that more localised dam breaks to the west of Issyk Kul could have left similar geomorphic and sedimentary evidence in this Central Asian mountain landscape. We thus caution against readily invoking megafloods as the main cause of lake-level drops of Issyk Kul. In summary, this thesis addresses some new pathways for studying rock glaciers and natural dams with several practical implications for studies on mountain permafrost and natural hazards.}, language = {en} } @phdthesis{Oeztuerk2018, author = {{\"O}zt{\"u}rk, Ugur}, title = {Learning more to predict landslides}, doi = {10.25932/publishup-42643}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426439}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 104}, year = {2018}, abstract = {Landslides are frequent natural hazards in rugged terrain, when the resisting frictional force of the surface of rupture yields to the gravitational force. These forces are functions of geological and morphological factors, such as angle of internal friction, local slope gradient or curvature, which remain static over hundreds of years; whereas more dynamic triggering events, such as rainfall and earthquakes, compromise the force balance by temporarily reducing resisting forces or adding transient loads. This thesis investigates landslide distribution and orientation due to landslide triggers (e.g. rainfall) at different scales (6-4∙10^5 km^2) and aims to link rainfall movement with the landslide distribution. It additionally explores the local impacts of the extreme rainstorms on landsliding and the role of precursory stability conditions that could be induced by an earlier trigger, such as an earthquake. Extreme rainfall is a common landslide trigger. Although several studies assessed rainfall intensity and duration to study the distribution of thus triggered landslides, only a few case studies quantified spatial rainfall patterns (i.e. orographic effect). Quantifying the regional trajectories of extreme rainfall could aid predicting landslide prone regions in Japan. To this end, I combined a non-linear correlation metric, namely event synchronization, and radial statistics to assess the general pattern of extreme rainfall tracks over distances of hundreds of kilometers using satellite based rainfall estimates. Results showed that, although the increase in rainfall intensity and duration positively correlates with landslide occurrence, the trajectories of typhoons and frontal storms were insufficient to explain landslide distribution in Japan. Extreme rainfall trajectories inclined northwestwards and were concentrated along some certain locations, such as coastlines of southern Japan, which was unnoticed in the landslide distribution of about 5000 rainfall-triggered landslides. These landslides seemed to respond to the mean annual rainfall rates. Above mentioned findings suggest further investigation on a more local scale to better understand the mechanistic response of landscape to extreme rainfall in terms of landslides. On May 2016 intense rainfall struck southern Germany triggering high waters and landslides. The highest damage was reported at the Braunsbach, which is located on the tributary-mouth fan formed by the Orlacher Bach. Orlacher Bach is a ~3 km long creek that drains a catchment of about ~6 km^2. I visited this catchment in June 2016 and mapped 48 landslides along the creek. Such high landslide activity was not reported in the nearby catchments within ~3300 km^2, despite similar rainfall intensity and duration based on weather radar estimates. My hypothesis was that several landslides were triggered by rainfall-triggered flash floods that undercut hillslope toes along the Orlacher Bach. I found that morphometric features such as slope and curvature play an important role in landslide distribution on this micro scale study site (<10 km^2). In addition, the high number of landslides along the Orlacher Bach could also be boosted by accumulated damages on hillslopes due karst weathering over longer time scales. Precursory damages on hillslopes could also be induced by past triggering events that effect landscape evolution, but this interaction is hard to assess independently from the latest trigger. For example, an earthquake might influence the evolution of a landscape decades long, besides its direct impacts, such as landslides that follow the earthquake. Here I studied the consequences of the 2016 Kumamoto Earthquake (MW 7.1) that triggered some 1500 landslides in an area of ~4000 km^2 in central Kyushu, Japan. Topography, i.e. local slope and curvature, both amplified and attenuated seismic waves, thus controlling the failure mechanism of those landslides (e.g. progressive). I found that topography fails in explaining the distribution and the preferred orientation of the landslides after the earthquake; instead the landslides were concentrated around the northeast of the rupture area and faced mostly normal to the rupture plane. This preferred location of the landslides was dominated mainly by the directivity effect of the strike-slip earthquake, which is the propagation of wave energy along the fault in the rupture direction; whereas amplitude variations of the seismic radiation altered the preferred orientation. I suspect that the earthquake directivity and the asymmetry of seismic radiation damaged hillslopes at those preferred locations increasing landslide susceptibility. Hence a future weak triggering event, e.g. scattered rainfall, could further trigger landslides at those damaged hillslopes.}, language = {en} } @phdthesis{Brell2018, author = {Brell, Maximilian}, title = {Physically based fusion of airborne hyperspectral and lidar data}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2018}, language = {en} } @phdthesis{Siegmund2018, author = {Siegmund, Jonatan Frederik}, title = {Quantifying impacts of climate extreme events on vegetation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407095}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2018}, abstract = {Together with the gradual change of mean values, ongoing climate change is projected to increase frequency and amplitude of temperature and precipitation extremes in many regions of Europe. The impacts of such in most cases short term extraordinary climate situations on terrestrial ecosystems are a matter of central interest of recent climate change research, because it can not per se be assumed that known dependencies between climate variables and ecosystems are linearly scalable. So far, yet, there is a high demand for a method to quantify such impacts in terms of simultaneities of event time series. In the course of this manuscript the new statistical approach of Event Coincidence Analysis (ECA) as well as it's R implementation is introduced, a methodology that allows assessing whether or not two types of event time series exhibit similar sequences of occurrences. Applications of the method are presented, analyzing climate impacts on different temporal and spacial scales: the impact of extraordinary expressions of various climatic variables on tree stem variations (subdaily and local scale), the impact of extreme temperature and precipitation events on the owering time of European shrub species (weekly and country scale), the impact of extreme temperature events on ecosystem health in terms of NDVI (weekly and continental scale) and the impact of El Ni{\~n}o and La Ni{\~n}a events on precipitation anomalies (seasonal and global scale). The applications presented in this thesis refine already known relationships based on classical methods and also deliver substantial new findings to the scientific community: the widely known positive correlation between flowering time and temperature for example is confirmed to be valid for the tails of the distributions while the widely assumed positive dependency between stem diameter variation and temperature is shown to be not valid for very warm and very cold days. The larger scale investigations underline the sensitivity of anthrogenically shaped landscapes towards temperature extremes in Europe and provide a comprehensive global ENSO impact map for strong precipitation events. Finally, by publishing the R implementation of the method, this thesis shall enable other researcher to further investigate on similar research questions by using Event Coincidence Analysis.}, language = {en} } @phdthesis{Ramos2018, author = {Ramos, Catalina}, title = {Structure and petrophysical properties of the Southern Chile subduction zone along 38.25°S from seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409183}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 111}, year = {2018}, abstract = {Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P- and S-velocities, to infer the composition and rocks within the subduction zone. Finally, an image of the subduction zone is given, jointly interpreting the results from this work with results from other studies. The Chilean seismogenic coupling zone at 38.25°S shows a continental crust with highly reflective horizontal, as well as (steep) dipping events. Among them, the Lanalhue Fault Zone (LFZ), which is interpreted to be east-dipping, is imaged to very shallow depths. Some steep reflectors are observed for the first time, for example one near the coast, related to high seismicity and another one near the LFZ. Steep shallow reflectivity towards the volcanic arc could be related to a steep west-dipping reflector interpreted as fluids and/or melts, migrating upwards due to material recycling in the continental mantle wedge. The high resolution of the S-velocity model in the first kilometres allowed to identify several sedimentary basins, characterized by very low P- and S-velocities, high Poisson's ratios and possible steep reflectivity. Such high Poisson's ratios are also observed within the oceanic crust, which reaches the seismogenic zone hydrated due to bending-related faulting. It is interpreted to release water until reaching the coast and under the continental mantle wedge. In terms of seismic velocities, the inferred composition and rocks in the continental crust is in agreement with field geology observations at the surface along the proflle. Furthermore, there is no requirement to call on the existence of measurable amounts of present-day fluids above the plate interface in the continental crust of the Coastal Cordillera and the Central Valley in this part of the Chilean convergent margin. A large-scale anisotropy in the continental crust and upper mantle, previously proposed from magnetotelluric studies, is proposed from seismic velocities. However, quantitative studies on this topic in the continental crust of the Chilean seismogenic zone at 38.25°S do not exist to date.}, language = {en} } @phdthesis{Engelhardt2018, author = {Engelhardt, Jonathan}, title = {40Ar/39Ar geochronology of ICDP PALEOVAN drilling cores}, doi = {10.25932/publishup-42953}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429539}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 338}, year = {2018}, abstract = {The scientific drilling campaign PALEOVAN was conducted in the summer of 2010 and was part of the international continental drilling programme (ICDP). The main goal of the campaign was the recovery of a sensitive climate archive in the East of Anatolia. Lacustrine deposits underneath the lake floor of 'Lake Van' constitute this archive. The drilled core material was recovered from two locations: the Ahlat Ridge and the Northern Basin. A composite core was constructed from cored material of seven parallel boreholes at the Ahlat Ridge and covers an almost complete lacustrine history of Lake Van. The composite record offered sensitive climate proxies such as variations of total organic carbon, K/Ca ratios, or a relative abundance of arboreal pollen. These proxies revealed patterns that are similar to climate proxy variations from Greenland ice cores. Climate variations in Greenland ice cores have been dated by modelling the timing of orbital forces to affect the climate. Volatiles from melted ice aliquots are often taken as high-resolution proxies and provide a base for fitting the according temporal models. The ICDP PALEOVAN scientific team fitted proxy data from the lacustrine drilling record to ice core data and constructed an age model. Embedded volcaniclastic layers had to be dated radiometrically in order to provide independent age constraints to the climate-stratigraphic age model. Solving this task by an application of the 40Ar/39Ar method was the main objective of this thesis. Earlier efforts to apply the 40Ar/39Ar dating resulted in inaccuracies that could not be explained satisfactorily. The absence of K-rich feldspars in suitable tephra layers implied that feldspar crystals needed to be 500 μm in size minimum, in order to apply single-crystal 40Ar/39Ar dating. Some of the samples did not contain any of these grain sizes or only very few crystals of that size. In order to overcome this problem this study applied a combined single-crystal and multi-crystal approach with different crystal fractions from the same sample. The preferred method of a stepwise heating analysis of an aliquot of feldspar crystals has been applied to three samples. The Na-rich crystals and their young geological age required 20 mg of inclusion-free, non-corroded feldspars. Small sample volumes (usually 25 \% aliquots of 5 cm3 of sample material - a spoon full of tephra) and the widespread presence of melt-inclusion led to the application of combined single- and multigrain total fusion analyses. 40Ar/39Ar analyses on single crystals have the advantage of being able to monitor the presence of excess 40Ar and detrital or xenocrystic contamination in the samples. Multigrain analyses may hide the effects from these obstacles. The results from the multigrain analyses are therefore discussed with respect to the findings from the respective cogenetic single crystal ages. Some of the samples in this study were dated by 40Ar/39Ar on feldspars on multigrain separates and (if available) in combination with only a few single crystals. 40Ar/39Ar ages from two of the samples deviated statistically from the age model. All other samples resulted in identical ages. The deviations displayed older ages than those obtained from the age model. t-Tests compared radiometric ages with available age control points from various proxies and from the relative paleointensity of the earth magnetic field within a stratigraphic range of ± 10 m. Concordant age control points from different relative chronometers indicated that deviations are a result of erroneous 40Ar/39Ar ages. The thesis argues two potential reasons for these ages: (1) the irregular appearance of 40Ar from rare melt- and fluid- inclusions and (2) the contamination of the samples with older crystals due to a rapid combination of assimilation and ejection. Another aliquot of feldspar crystals that underwent separation for the application of 40Ar/39Ar dating was investigated for geochemical inhomogeneities. Magmatic zoning is ubiquitous in the volcaniclastic feldspar crystals. Four different types of magmatic zoning were detected. The zoning types are compositional zoning (C-type zoning), pseudo-oscillatory zoning of trace ele- ment concentrations (PO-type zoning), chaotic and patchy zoning of major and trace element concentrations (R-type zoning) and concentric zoning of trace elements (CC-type zoning). Sam- ples that deviated in 40Ar/39Ar ages showed C-type zoning, R-type zoning or a mix of different types of zoning (C-type and PO-type). Feldspars showing PO-type zoning typically represent the smallest grain size fractions in the samples. The constant major element compositions of these crystals are interpreted to represent the latest stages in the compositional evolution of feldspars in a peralkaline melt. PO-type crystals contain less melt- inclusions than other zoning types and are rarely corroded. This thesis concludes that feldspars that show PO-type zoning are most promising chronometers for the 40Ar/39Ar method, if samples provide mixed zoning types of Quaternary anorthoclase feldspars. Five samples were dated by applying the 40Ar/39Ar method to volcanic glass. High fractions of atmospheric Ar (typically > 98\%) significantly hampered the precision of the 40Ar/39Ar ages and resulted in rough age estimates that widely overlap the age model. Ar isotopes indicated that the glasses bore a chorine-rich Ar-end member. The chlorine-derived 38Ar indicated chlorine-rich fluid-inclusions or the hydration of the volcanic glass shards. This indication strengthened the evidence that irregularly distributed melt-inclusions and thus irregular distributed excess 40Ar influenced the problematic feldspar 40Ar/39Ar ages. Whether a connection between a corrected initial 40Ar/36Ar ratio from glasses to the 40Ar/36Ar ratios from pore waters exists remains unclear. This thesis offers another age model, which is similarly based on the interpolation of the temporal tie points from geophysical and climate-stratigraphic data. The model used a PCHIP- interpolation (piecewise cubic hermite interpolating polynomial) whereas the older age model used a spline-interpolation. Samples that match in ages from 40Ar/39Ar dating of feldspars with the earlier published age model were additionally assigned with an age from the PCHIP- interpolation. These modelled ages allowed a recalculation of the Alder Creek sanidine mineral standard. The climate-stratigraphic calibration of an 40Ar/39Ar mineral standard proved that the age versus depth interpolations from PAELOVAN drilling cores were accurate, and that the applied chronometers recorded the temporal evolution of Lake Van synchronously. Petrochemical discrimination of the sampled volcaniclastic material is also given in this thesis. 41 from 57 sampled volcaniclastic layers indicate Nemrut as their provenance. Criteria that served for the provenance assignment are provided and reviewed critically. Detailed correlations of selected PALEOVAN volcaniclastics to onshore samples that were described in detail by earlier studies are also discussed. The sampled volcaniclastics dominantly have a thickness of < 40 cm and have been ejected by small to medium sized eruptions. Onshore deposits from these types of eruptions are potentially eroded due to predominant strong winds on Nemrut and S{\"u}phan slopes. An exact correlation with the data presented here is therefore equivocal or not possible at all. Deviating feldspar 40Ar/39Ar ages can possibly be explained by inherited 40Ar from feldspar xenocrysts contaminating the samples. In order to test this hypothesis diffusion couples of Ba were investigated in compositionally zoned feldspar crystals. The diffusive behaviour of Ba in feldspar is known, and gradients in the changing concentrations allowed for the calculation of the duration of the crystal's magmatic development since the formation of the zoning interface. Durations were compared with degassing scenarios that model the Ar-loss during assimilation and subsequent ejection of the xenocrystals. Diffusive equilibration of the contrasting Ba concentrations is assumed to generate maximum durations as the gradient could have been developed in several growth and heating stages. The modelling does not show any indication of an involvement of inherited 40Ar in any of the deviating samples. However, the analytical set-up represents the lower limit of the required spatial resolution. Therefore, it cannot be excluded that the degassing modelling relies on a significant overestimation of the maximum duration of the magmatic history. Nevertheless, the modelling of xenocrystal degassing evidences that the irregular incorporation of excess 40Ar by melt- and fluid inclusions represents the most critical problem that needs to be overcome in dating volcaniclastic feldspars from the PALEOVAN drill cores. This thesis provides the complete background in generating and presenting 40Ar/39Ar ages that are compared to age data from a climate-stratigraphic model. Deviations are identified statistically and then discussed in order to find explanations from the age model and/or from 40Ar/39Ar geochronology. Most of the PALEOVAN stratigraphy provides several chronometers that have been proven for their synchronicity. Lacustrine deposits from Lake Van represent a key archive for reconstructing climate evolution in the eastern Mediterranean and in the Near East. The PALEOVAN record offers a climate-stratigraphic age model with a remarkable accuracy and resolution.}, language = {en} } @phdthesis{Witt2018, author = {Witt, Tanja Ivonne}, title = {Camera Monitoring at volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421073}, school = {Universit{\"a}t Potsdam}, pages = {viii, 140}, year = {2018}, abstract = {Basaltic fissure eruptions, such as on Hawai'i or on Iceland, are thought to be driven by the lateral propagation of feeder dikes and graben subsidence. Associated solid earth processes, such as deformation and structural development, are well studied by means of geophysical and geodetic technologies. The eruptions themselves, lava fountaining and venting dynamics, in turn, have been much less investigated due to hazardous access, local dimension, fast processes, and resulting poor data availability. This thesis provides a detailed quantitative understanding of the shape and dynamics of lava fountains and the morphological changes at their respective eruption sites. For this purpose, I apply image processing techniques, including drones and fixed installed cameras, to the sequence of frames of video records from two well-known fissure eruptions in Hawai'i and Iceland. This way I extract the dimensions of multiple lava fountains, visible in all frames. By putting these results together and considering the acquisition times of the frames I quantify the variations in height, width and eruption velocity of the lava fountains. Then I analyse these time-series in both time and frequency domains and investigate the similarities and correlations between adjacent lava fountains. Following this procedure, I am able to link the dynamics of the individual lava fountains to physical parameters of the magma transport in the feeder dyke of the fountains. The first case study in this thesis focuses on the March 2011 Pu'u'O'o eruption, Hawai'i, where a continuous pulsating behaviour at all eight lava fountains has been observed. The lava fountains, even those from different parts of the fissure that are closely connected, show a similar frequency content and eruption behaviour. The regular pattern in the heights of lava fountain suggests a controlling process within the magma feeder system like a hydraulic connection in the underlying dyke, affecting or even controlling the pulsating behaviour. The second case study addresses the 2014-2015 Holuhraun fissure eruption, Iceland. In this case, the feeder dyke is highlighted by the surface expressions of graben-like structures and fault systems. At the eruption site, the activity decreases from a continuous line of fire of ~60 vents to a limited number of lava fountains. This can be explained by preferred upwards magma movements through vertical structures of the pre-eruptive morphology. Seismic tremors during the eruption reveal vent opening at the surface and/or pressure changes in the feeder dyke. The evolving topography of the cinder cones during the eruption interacts with the lava fountain behaviour. Local variations in the lava fountain height and width are controlled by the conduit diameter, the depth of the lava pond and the shape of the crater. Modelling of the fountain heights shows that long-term eruption behaviour is controlled mainly by pressure changes in the feeder dyke. This research consists of six chapters with four papers, including two first author and two co-author papers. It establishes a new method to analyse lava fountain dynamics by video monitoring. The comparison with the seismicity, geomorphologic and structural expressions of fissure eruptions shows a complex relationship between focussed flow through dykes, the morphology of the cinder cones, and the lava fountain dynamics at the vents of a fissure eruption.}, language = {en} } @phdthesis{Ott2018, author = {Ott, Florian}, title = {Late Glacial and Holocene climate and environmental evolution in the southern Baltic lowlands derived from varved lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414805}, school = {Universit{\"a}t Potsdam}, pages = {xix, 241}, year = {2018}, abstract = {Holocene climate variability is generally characterized by low frequency changes than compared to the last glaciations including the Lateglacial. However, there is vast evidence for decadal to centennial scale oscillations and millennial scale climate trends, which are within and beyond a human lifetime perception, respectively. Within the Baltic realm, a transitional zone between oceanic and continental climate influence, the impact of Holocene and Lateglacial climate and environmental change is currently partly understood. This is mainly attributed to the scarcity of well-dated and high-resolution sediment records and to the lacking continuity of already investigated archives. The aim of this doctoral thesis is to reconstruct Holocene and Late Glacial climate variability on local to (over)regional scales based on varved (annually laminated) sediments from Lake Czechowskie down to annual resolution. This project was carried out within the Virtual Institute for Integrated Climate and Landscape Evolution Analyses (ICLEA) and funded by the Helmholtz Association and the Helmholtz Climate Initiative REKLIM (Regional Climate Change). ICLEA intended to gain a better understanding of climate variability and landscape evolution processes in the Northern Central European lowlands since the last deglaciation. REKLIM Topic 8 "Abrupt climate change derived from proxy data" aims at identifying spatiotemporal patterns of climate variability between e.g. higher and lower latitudes. The main aim of this thesis was (i) to establish a robust chronology based on a multiple dating approach for Lake Czechowskie covering the Late Glacial and Holocene and for the Trzechowskie palaeolake for the Lateglacial, respectively, (ii) to reconstruct past climatic and environmental conditions on centennial to multi-millennial time scales and (iii) to distinguish between local to regional different sediments responses to climate change. Addressing the first aim, the Lake Czechowskie chronology has been established by a multiple dating approach comprising information from varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains, biostratigraphy and 137Cs activity concentration measurements. Those independent age constraints covering the Lateglacial and the entire Holocene and have been further implemented in a Bayesian age model by using OxCal v.4.2. Thus, even within non-varved sediment intervals, robust chronological information has been used for absolute age determination. The identification of five cryptotephras, of which three are used as unambiguous isochrones, is furthermore a significant improvement of the Czechowskie chronology and currently unique for the Holocene within Poland. The first findings of coexisting early Holocene H{\"a}sseldalen and Askja-S cryptotephras within a varved sequence even allowed differential dating between both volcanic ashes and stimulated the discussion of revising the absolute ages of the Askja-S tephra. The Trzechowskie palaeolake chronology has been established by a multiple dating approach comprising varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains and biostratigraphy, covers the Lateglacial period (Aller{\o}d and Younger Dryas) and has been implemented in OxCal v.4.2. Those age constraints allowed regional correlation to other high-resolution climate archives and identifying leads and lags of proxy responses at the onset of the Younger Dryas. The second aim has been accomplished by detailed micro-facies and geochemical analyses of the Czechowskie sediments for the entire Holocene. Thus, especially micro-facies changes had been linked to enhanced productivity at Lake Czechowskie. Most prominent changes have been recorded at 7.3, 6.5, 4.3 and 2.8 varve kyrs BP and are linked to a stepwise increasing influence of Atlantic air masses. Especially, the mid-Holocene change, which had been widely reported from palaeohydrological records in low latitudes, has been identified and linked to large scale reorganization of atmospheric circulation patterns. Thus, especially long-term changes of climatic and environmental boundary conditions are widely recorded by the Czechowskie sediments. The pronounced response to (multi)millennial scale changes is further corroborated by the lack of clear sediment responses to early Holocene centennial scale climate oscillations (e.g. the Preboreal Oscillation). However, decadal scale changes at Lake Czechowskie during the most recent period (last 140 years) have been investigated in a lake comparison study. To fulfill the third aim of the doctoral thesis, three lakes in close vicinity to each other have been investigated in order to better distinguish how local, site-specific parameters, may superimpose regional climate driven changes. All lakes haven been unambiguously linked by the Askja AD1875 cryptotephra and independent varve chronologies. As a result, climate warming has only been recorded by sedimentation changes at the smallest and best sheltered lake (Głęboczek), whereas the largest lake (Czechowskie) and the shallowest lake (Jelonek) showed attenuated and less clear sediment responses, respectively. The different responses have been linked to morphological lake characteristics (lake size and depth, catchment area). This study highlights the potential of high-resolution lake comparison for robust proxy based climate reconstructions. In summary, the doctoral thesis presents a high-resolution sediment record with an underlying age model, which is prerequisite for unprecedented age control down to annual resolution. Sediment proxy based climate reconstructions demonstrate the importance of the Czechowskie sediments for better understanding climate variability in the southern Baltic realm. Case studies showed the clear response on millennial time scale, while decadal scale fluctuations are either less well expressed or superimposed by local, site-specific parameters. The identification of volcanic ash layers is not only used for unambiguous isochrones, those are key tie lines for local to supra regional archive synchronization and establish the Lake Czechowskie as a key climate archive.}, language = {en} } @phdthesis{Darmawan2018, author = {Darmawan, Herlan}, title = {Morphometric changes at the Merapi lava dome between 2012 and 2017}, school = {Universit{\"a}t Potsdam}, pages = {134}, year = {2018}, language = {en} } @phdthesis{Smith2018, author = {Smith, Taylor}, title = {Decadal changes in the snow regime of High Mountain Asia, 1987-2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407120}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 142}, year = {2018}, abstract = {More than a billion people rely on water from rivers sourced in High Mountain Asia (HMA), a significant portion of which is derived from snow and glacier melt. Rural communities are heavily dependent on the consistency of runoff, and are highly vulnerable to shifts in their local environment brought on by climate change. Despite this dependence, the impacts of climate change in HMA remain poorly constrained due to poor process understanding, complex terrain, and insufficiently dense in-situ measurements. HMA's glaciers contain more frozen water than any region outside of the poles. Their extensive retreat is a highly visible and much studied marker of regional and global climate change. However, in many catchments, snow and snowmelt represent a much larger fraction of the yearly water budget than glacial meltwaters. Despite their importance, climate-related changes in HMA's snow resources have not been well studied. Changes in the volume and distribution of snowpack have complex and extensive impacts on both local and global climates. Eurasian snow cover has been shown to impact the strength and direction of the Indian Summer Monsoon -- which is responsible for much of the precipitation over the Indian Subcontinent -- by modulating earth-surface heating. Shifts in the timing of snowmelt have been shown to limit the productivity of major rangelands, reduce streamflow, modify sediment transport, and impact the spread of vector-borne diseases. However, a large-scale regional study of climate impacts on snow resources had yet to be undertaken. Passive Microwave (PM) remote sensing is a well-established empirical method of studying snow resources over large areas. Since 1987, there have been consistent daily global PM measurements which can be used to derive an estimate of snow depth, and hence snow-water equivalent (SWE) -- the amount of water stored in snowpack. The SWE estimation algorithms were originally developed for flat and even terrain -- such as the Russian and Canadian Arctic -- and have rarely been used in complex terrain such as HMA. This dissertation first examines factors present in HMA that could impact the reliability of SWE estimates. Forest cover, absolute snow depth, long-term average wind speeds, and hillslope angle were found to be the strongest controls on SWE measurement reliability. While forest density and snow depth are factors accounted for in modern SWE retrieval algorithms, wind speed and hillslope angle are not. Despite uncertainty in absolute SWE measurements and differences in the magnitude of SWE retrievals between sensors, single-instrument SWE time series were found to be internally consistent and suitable for trend analysis. Building on this finding, this dissertation tracks changes in SWE across HMA using a statistical decomposition technique. An aggregate decrease in SWE was found (10.6 mm/yr), despite large spatial and seasonal heterogeneities. Winter SWE increased in almost half of HMA, despite general negative trends throughout the rest of the year. The elevation distribution of these negative trends indicates that while changes in SWE have likely impacted glaciers in the region, climate change impacts on these two pieces of the cryosphere are somewhat distinct. Following the discussion of relative changes in SWE, this dissertation explores changes in the timing of the snowmelt season in HMA using a newly developed algorithm. The algorithm is shown to accurately track the onset and end of the snowmelt season (70\% within 5 days of a control dataset, 89\% within 10). Using a 29-year time series, changes in the onset, end, and duration of snowmelt are examined. While nearly the entirety of HMA has experienced an earlier end to the snowmelt season, large regions of HMA have seen a later start to the snowmelt season. Snowmelt periods have also decreased in almost all of HMA, indicating that the snowmelt season is generally shortening and ending earlier across HMA. By examining shifts in both the spatio-temporal distribution of SWE and the timing of the snowmelt season across HMA, we provide a detailed accounting of changes in HMA's snow resources. The overall trend in HMA is towards less SWE storage and a shorter snowmelt season. However, long-term and regional trends conceal distinct seasonal, temporal, and spatial heterogeneity, indicating that changes in snow resources are strongly controlled by local climate and topography, and that inter-annual variability plays a significant role in HMA's snow regime.}, language = {en} } @phdthesis{Haendel2018, author = {H{\"a}ndel, Annabel}, title = {Ground-motion model selection and adjustment for seismic hazard analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418123}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2018}, abstract = {Erdbeben k{\"o}nnen starke Bodenbewegungen erzeugen und es ist wichtig, diese in einer seismischen Gef{\"a}hrdungsanalyse korrekt vorherzusagen. {\"U}blicherweise werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem logischen Baum zusammengef{\"u}gt. Wenn jedoch die Bodenbewegung in einem Gebiet mit geringer Seismizit{\"a}t bestimmen werden soll, dann fehlen in der Regel die Daten, um regionsspezifische GMPEs zu entwickeln. In diesen F{\"a}llen ist es notwendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zur{\"u}ckzugreifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden seismologische Informationen aus der Zielregion wie beispielsweise die standortspezifische D{\"a}mpfung kappa0 ben{\"o}tigt. Diese Parameter lassen sich jedoch ebenfalls nur unzuverl{\"a}ssig bestimmen, wenn die Datengrundlage schlecht ist. In meiner Dissertation besch{\"a}ftige ich mich daher mit der Auswahl von GMPEs f{\"u}r den logischen Baum beziehungsweise deren Anpassung an Regionen mit geringer Seismizit{\"a}t. Ich folge dabei zwei verschiedenen Strategien. Im ersten Ansatz geht es um das Aufstellen eines logischen Baumes, falls kein regionsspezifisches Modell vorhanden ist. Ich stelle eine Methode vor, in der mehrere regionsfremde Modelle zu einem Mixmodell zusammengef{\"u}gt werden. Die Modelle werden dabei je nach ihrer Eignung gewichtet und die Gewichte mittels der wenigen verf{\"u}gbaren Daten aus der Zielregion ermittelt. Ein solches Mixmodell kann als sogenanntes 'Backbone'-Modell verwendet werden, welches in der Lage ist, mittlere Bodenbewegungen in der Zielregion korrekt vorherzusagen. Ich teste diesen Ansatz f{\"u}r Nordchile und acht GMPEs, die f{\"u}r verschiedene Subduktionszonen auf der Welt entwickelt wurden. Die Resultate zeigen, dass das Mixmodell bessere Ergebnisse liefert als die einzelnen GMPEs, die zu seiner Erzeugung genutzt wurden. Es ist außerdem ebenso gut in der Vorhersage von Bodenbewegungen wie ein Regressionsmodell, welches extra f{\"u}r Nordchile entwickelt wurde. Im zweiten Ansatz besch{\"a}ftige ich mich mit der Bestimmung der standortspezifischen D{\"a}mpfung kappa0. kappa0 ist einer der wichtigsten Parameter zur Anpassung eines GMPEs an eine andere Region. Mein Ziel ist es, kappa0 aus seismischer Bodenunruhe anstelle von Erdbeben zu ermitteln, da diese kontinuierlich aufgezeichnet wird. Mithilfe von Interferometrie kann die Geschwindigkeit und D{\"a}mpfung von seismischen Wellen im Untergrund bestimmt werden. Dazu werden lange Aufzeichnungsreihen seismischer Bodenunruhe entweder kreuzkorreliert oder entfaltet (Dekonvolution). Die Bestimmung der D{\"a}mpfung aus Bodenunruhe bei Frequenzen {\"u}ber 1 Hz und in geringen Tiefen ist jedoch nicht trivial. Ich zeige in meiner Dissertation die Ergebnisse von zwei Studien. In der ersten Studie wird die D{\"a}mpfung von Love-Wellen zwischen 1-4 Hz f{\"u}r ein kleines Testarray in Griechenland ermittelt. In der zweiten Studie verwende ich die Daten einer Bohrloch und einer Oberfl{\"a}chenstation aus dem Vogtland, um die D{\"a}mpfung von S-Wellen zwischen 5-15 Hz zu bestimmen. Diese beiden Studien stellen jedoch nur den Ausgangspunkt f{\"u}r zuk{\"u}nftige Untersuchungen dar, in denen kappa0 direkt aus der seismischer Bodenunruhe hergeleitet werden soll.}, language = {en} } @phdthesis{Tofelde2018, author = {Tofelde, Stefanie}, title = {Signals stored in sediment}, doi = {10.25932/publishup-42716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427168}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 172}, year = {2018}, abstract = {Tectonic and climatic boundary conditions determine the amount and the characteristics (size distribution and composition) of sediment that is generated and exported from mountain regions. On millennial timescales, rivers adjust their morphology such that the incoming sediment (Qs,in) can be transported downstream by the available water discharge (Qw). Changes in climatic and tectonic boundary conditions thus trigger an adjustment of the downstream river morphology. Understanding the sensitivity of river morphology to perturbations in boundary conditions is therefore of major importance, for example, for flood assessments, infrastructure and habitats. Although we have a general understanding of how rivers evolve over longer timescales, the prediction of channel response to changes in boundary conditions on a more local scale and over shorter timescales remains a major challenge. To better predict morphological channel evolution, we need to test (i) how channels respond to perturbations in boundary conditions and (ii) how signals reflecting the persisting conditions are preserved in sediment characteristics. This information can then be applied to reconstruct how local river systems have evolved over time. In this thesis, I address those questions by combining targeted field data collection in the Quebrada del Toro (Southern Central Andes of NW Argentina) with cosmogenic nuclide analysis and remote sensing data. In particular, I (1) investigate how information on hillslope processes is preserved in the 10Be concentration (geochemical composition) of fluvial sediments and how those signals are altered during downstream transport. I complement the field-based approach with physical experiments in the laboratory, in which I (2) explore how changes in sediment supply (Qs,in) or water discharge (Qw) generate distinct signals in the amount of sediment discharge at the basin outlet (Qs,out). With the same set of experiments, I (3) study the adjustments of alluvial channel morphology to changes in Qw and Qs,in, with a particular focus in fill-terrace formation. I transfer the findings from the experiments to the field to (4) reconstruct the evolution of a several-hundred meter thick fluvial fill-terrace sequence in the Quebrada del Toro. I create a detailed terrace chronology and perform reconstructions of paleo-Qs and Qw from the terrace deposits. In the following paragraphs, I summarize my findings on each of these four topics. First, I sampled detrital sediment at the outlet of tributaries and along the main stem in the Quebrada del Toro, analyzed their 10Be concentration ([10Be]) and compared the data to a detailed hillslope-process inventory. The often observed non-linear increase in catchment-mean denudation rate (inferred from [10Be] in fluvial sediment) with catchment-median slope, which has commonly been explained by an adjustment in landslide-frequency, coincided with a shift in the main type of hillslope processes. In addition, the [10Be] in fluvial sediments varied with grain-size. I defined the normalized sand-gravel-index (NSGI) as the 10Be-concentration difference between sand and gravel fractions divided by their summed concentrations. The NSGI increased with median catchment slope and coincided with a shift in the prevailing hillslope processes active in the catchments, thus making the NSGI a potential proxy for the evolution of hillslope processes over time from sedimentary deposits. However, the NSGI recorded hillslope-processes less well in regions of reduced hillslope-channel connectivity and, in addition, has the potential to be altered during downstream transport due to lateral sediment input, size-selective sediment transport and abrasion. Second, my physical experiments revealed that sediment discharge at the basin outlet (Qs,out) varied in response to changes in Qs,in or Qw. While changes in Qw caused a distinct signal in Qs,out during the transient adjustment phase of the channel to new boundary conditions, signals related to changes in Qs,in were buffered during the transient phase and likely only become apparent once the channel is adjusted to the new conditions. The temporal buffering is related to the negative feedback between Qs,in and channel-slope adjustments. In addition, I inferred from this result that signals extracted from the geochemical composition of sediments (e.g., [10Be]) are more likely to represent modern-day conditions during times of aggradation, whereas the signal will be temporally buffered due to mixing with older, remobilized sediment during times of channel incision. Third, the same set of experiments revealed that river incision, channel-width narrowing and terrace cutting were initiated by either an increase in Qw, a decrease in Qs,in or a drop in base level. The lag-time between the external perturbation and the terrace cutting determined (1) how well terrace surfaces preserved the channel profile prior to perturbation and (2) the degree of reworking of terrace-surface material. Short lag-times and well preserved profiles occurred in cases with a rapid onset of incision. Also, lag-times were synchronous along the entire channel after upstream perturbations (Qw, Qs,in), whereas base-level fall triggered an upstream migrating knickzone, such that lag-times increased with distance upstream. Terraces formed after upstream perturbations (Qw, Qs,in) were always steeper when compared to the active channel in new equilibrium conditions. In the base-level fall experiment, the slope of the terrace-surfaces and the modern channel were similar. Hence, slope comparisons between the terrace surface and the modern channel can give insights into the mechanism of terrace formation. Fourth, my detailed terrace-formation chronology indicated that cut-and-fill episodes in the Quebrada del Toro followed a ~100-kyr cyclicity, with the oldest terraces ~ 500 kyr old. The terraces were formed due to variability in upstream Qw and Qs. Reconstructions of paleo-Qs over the last 500 kyr, which were restricted to times of sediment deposition, indicated only minor (up to four-fold) variations in paleo-denudation rates. Reconstructions of paleo-Qw were limited to the times around the onset of river incision and revealed enhanced discharge from 10 to 85\% compared to today. Such increases in Qw are in agreement with other quantitative paleo-hydrological reconstructions from the Eastern Andes, but have the advantage of dating further back in time.}, language = {en} } @phdthesis{Behrens2018, author = {Behrens, Ricarda}, title = {Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408503}, school = {Universit{\"a}t Potsdam}, pages = {ix, 107, XXIV}, year = {2018}, abstract = {In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution - re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.}, language = {en} } @phdthesis{Eugster2018, author = {Eugster, Patricia}, title = {Landscape evolution in the western Indian Himalaya since the Miocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420329}, school = {Universit{\"a}t Potsdam}, pages = {XXI, 208}, year = {2018}, abstract = {The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth's surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the B{\o}lling/Aller{\o}d interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas.}, language = {en} } @phdthesis{Agarwal2018, author = {Agarwal, Ankit}, title = {Unraveling spatio-temporal climatic patterns via multi-scale complex networks}, doi = {10.25932/publishup-42395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423956}, school = {Universit{\"a}t Potsdam}, pages = {xxix, 153}, year = {2018}, abstract = {The climate is a complex dynamical system involving interactions and feedbacks among different processes at multiple temporal and spatial scales. Although numerous studies have attempted to understand the climate system, nonetheless, the studies investigating the multiscale characteristics of the climate are scarce. Further, the present set of techniques are limited in their ability to unravel the multi-scale variability of the climate system. It is completely plausible that extreme events and abrupt transitions, which are of great interest to climate community, are resultant of interactions among processes operating at multi-scale. For instance, storms, weather patterns, seasonal irregularities such as El Ni{\~n}o, floods and droughts, and decades-long climate variations can be better understood and even predicted by quantifying their multi-scale dynamics. This makes a strong argument to unravel the interaction and patterns of climatic processes at different scales. With this background, the thesis aims at developing measures to understand and quantify multi-scale interactions within the climate system. In the first part of the thesis, I proposed two new methods, viz, multi-scale event synchronization (MSES) and wavelet multi-scale correlation (WMC) to capture the scale-specific features present in the climatic processes. The proposed methods were tested on various synthetic and real-world time series in order to check their applicability and replicability. The results indicate that both methods (WMC and MSES) are able to capture scale-specific associations that exist between processes at different time scales in a more detailed manner as compared to the traditional single scale counterparts. In the second part of the thesis, the proposed multi-scale similarity measures were used in constructing climate networks to investigate the evolution of spatial connections within climatic processes at multiple timescales. The proposed methods WMC and MSES, together with complex network were applied to two different datasets. In the first application, climate networks based on WMC were constructed for the univariate global sea surface temperature (SST) data to identify and visualize the SSTs patterns that develop very similarly over time and distinguish them from those that have long-range teleconnections to other ocean regions. Further investigations of climate networks on different timescales revealed (i) various high variability and co-variability regions, and (ii) short and long-range teleconnection regions with varying spatial distance. The outcomes of the study not only re-confirmed the existing knowledge on the link between SST patterns like El Ni{\~n}o Southern Oscillation and the Pacific Decadal Oscillation, but also suggested new insights into the characteristics and origins of long-range teleconnections. In the second application, I used the developed non-linear MSES similarity measure to quantify the multivariate teleconnections between extreme Indian precipitation and climatic patterns with the highest relevance for Indian sub-continent. The results confirmed significant non-linear influences that were not well captured by the traditional methods. Further, there was a substantial variation in the strength and nature of teleconnection across India, and across time scales. Overall, the results from investigations conducted in the thesis strongly highlight the need for considering the multi-scale aspects in climatic processes, and the proposed methods provide robust framework for quantifying the multi-scale characteristics.}, language = {en} } @phdthesis{Hesse2018, author = {Hesse, Cornelia}, title = {Integrated water quality modelling in meso- to large-scale catchments of the Elbe river basin under climate and land use change}, doi = {10.25932/publishup-42295}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422957}, school = {Universit{\"a}t Potsdam}, pages = {ix, 217}, year = {2018}, abstract = {In einer sich {\"a}ndernden Umwelt sind Fließgew{\"a}sser{\"o}kosysteme vielf{\"a}ltigen direkten und indirekten anthropogenen Belastungen ausgesetzt, die die Gew{\"a}sser sowohl in ihrer Menge als auch in ihrer G{\"u}te beeintr{\"a}chtigen k{\"o}nnen. Ein {\"u}berm{\"a}ßiger Eintrag von N{\"a}hrstoffen verursacht etwa Massenentwicklungen von Algen und Sauerstoffdefizite in den Gew{\"a}ssern, was zum Verfehlen der Ziele der Wasserrahmenrichtlinie (WRRL) f{\"u}hren kann. In vielen europ{\"a}ischen Einzugsgebieten und auch dem der Elbe sind solche Probleme zu beobachten. W{\"a}hrend der letzten Jahrzehnte entstanden diverse computergest{\"u}tzte Modelle, die zum Schutz und Management von Wasserressourcen genutzt werden k{\"o}nnen. Sie helfen beim Verstehen der N{\"a}hrstoffprozesse und Belastungspfade in Einzugsgebieten, bei der Absch{\"a}tzung m{\"o}glicher Folgen von Klima- und Landnutzungs{\"a}nderungen f{\"u}r die Wasserk{\"o}rper, sowie bei der Entwicklung eventueller Kompensationsmaßnahmen. Aufgrund der Vielzahl an sich gegenseitig beeinflussenden Prozessen ist die Modellierung der Wasserqualit{\"a}t komplexer und aufw{\"a}ndiger als eine reine hydrologische Modellierung. {\"O}kohydrologische Modelle zur Simulation der Gew{\"a}sserg{\"u}te, einschließlich des Modells SWIM (Soil and Water Integrated Model), bed{\"u}rfen auch h{\"a}ufig noch einer Weiterentwicklung und Verbesserung der Prozessbeschreibungen. Aus diesen {\"U}berlegungen entstand die vorliegende Dissertation, die sich zwei Hauptanliegen widmet: 1) einer Weiterentwicklung des N{\"a}hrstoffmoduls des {\"o}kohydrologischen Modells SWIM f{\"u}r Stickstoff- und Phosphorprozesse, und 2) der Anwendung des Modells SWIM im Elbegebiet zur Unterst{\"u}tzung eines anpassungsf{\"a}higen Wassermanagements im Hinblick auf m{\"o}gliche zuk{\"u}nftige {\"A}nderungen der Umweltbedingungen. Die kumulative Dissertation basiert auf f{\"u}nf wissenschaftlichen Artikeln, die in internationalen Zeitschriften ver{\"o}ffentlicht wurden. Im Zuge der Arbeit wurden verschiedene Modellanpassungen in SWIM vorgenommen, wie etwa ein einfacher Ansatz zur Verbesserung der Simulation der Wasser- und N{\"a}hrstoffverh{\"a}ltnisse in Feuchtgebieten, ein um Ammonium erweiterter Stickstoffkreislauf im Boden, sowie ein Flussprozessmodul, das Umwandlungsprozesse, Sauerstoffverh{\"a}ltnisse und Algenwachstum im Fließgew{\"a}sser simuliert, haupts{\"a}chlich angetrieben von Temperatur und Licht. Auch wenn dieser neue Modellansatz ein sehr komplexes Modell mit einer Vielzahl an neuen Kalibrierungsparametern und steigender Unsicherheit erzeugte, konnten gute Ergebnisse in den Teileinzugsgebieten und dem gesamten Gebiet der Elbe erzielt werden, so dass das Modell zur Absch{\"a}tzung m{\"o}glicher Folgen von Klimavariabilit{\"a}ten und ver{\"a}nderten anthropogenen Einfl{\"u}ssen f{\"u}r die Gew{\"a}sserg{\"u}te genutzt werden konnte. Das neue Fließgew{\"a}ssermodul ist ein wichtiger Beitrag zur Verbesserung der N{\"a}hrstoffmodellierung in SWIM, vor allem f{\"u}r Stoffe, die haupts{\"a}chlich aus Punktquellen in die Gew{\"a}sser gelangen (wie z.B. Phosphat). Der neue Modellansatz verbessert zudem die Anwendbarkeit von SWIM f{\"u}r Fragestellungen im Zusammenhang mit der WRRL, bei der biologische Qualit{\"a}tskomponenten (wie etwa Phytoplankton) eine zentrale Rolle spielen. Die dargestellten Ergebnisse der Wirkungsstudien k{\"o}nnen bei Entscheidungstr{\"a}gern und anderen Akteuren das Verst{\"a}ndnis f{\"u}r zuk{\"u}nftige Herausforderungen im Gew{\"a}ssermanagement erh{\"o}hen und dazu beitragen, ein angepasstes Management f{\"u}r das Elbeeinzugsgebiet zu entwickeln.}, language = {en} } @phdthesis{Genderjahn2018, author = {Genderjahn, Steffi}, title = {Biosignatures of Present and Past Microbial Life in Southern African Geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410110}, school = {Universit{\"a}t Potsdam}, pages = {XI, 166, xxii}, year = {2018}, abstract = {Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study.}, language = {en} } @phdthesis{Platz2018, author = {Platz, Anna}, title = {Novel pre-stack data confinement and selection for magnetotelluric data processing and its application to data of the Eastern Karoo Basin, South Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415087}, school = {Universit{\"a}t Potsdam}, pages = {xx, 1131}, year = {2018}, abstract = {Magnetotellurics (MT) is a geophysical method that is able to image the electrical conductivity structure of the subsurface by recording time series of natural electromagnetic (EM) field variations. During the data processing these time series are divided into small segments and for each segment spectral values are computed which are typically averaged in a statistical manner to obtain MT transfer functions. Unfortunately, the presence of man-made EM noise sources often deteriorates a significant amount of the recorded time series resulting in disturbed transfer functions. Many advanced processing techniques, e.g. robust statistics, pre-stack data selection or remote reference, have been developed to tackle this problem. The first two techniques reduce the amount of outliers and noise in the data whereas the latter approach removes noise by using data from another MT station. However, especially in populated regions the data processing is still quite challenging even with these approaches. In this thesis, I present two novel pre-stack data confinement and selection criteria for the detection of outliers and noise affected data based on (i) a distance measure of each data segment with regard to the entire sample distribution and (ii) the evaluation of the magnetic polarisation direction of all segments. The first criterion is able to remove data points that scatter around the desired MT distribution and furthermore it can, under some circumstances, even reject complete data cluster originating from noise sources. The second criterion eliminates data points caused by a strongly polarised magnetic signal. Both criteria have been successfully applied to many stations with different noise contaminations showing that they can significantly improve the transfer function estimation. The novel criteria were used to evaluate a MT data set from the Eastern Karoo Basin in South Africa. The corresponding field experiment is part of an extensive research programme to collect information of the current e.g. geological setting in this region prior to a potential shale gas exploitation. The aim was to investigate whether a three-dimensional (3D) inversion of the newly measured data fosters a more realistic mapping of physical properties of the target horizon. For this purpose, a comprehensive 3D model was derived by using all available data. In a second step, I analysed parameters of the target horizon, e.g. its conductivity, that are proxies for physical properties such as thermal maturity and porosity.}, language = {en} } @phdthesis{Angermann2018, author = {Angermann, Lisa}, title = {Hillslope-stream connectivity across scales}, doi = {10.25932/publishup-42454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424542}, school = {Universit{\"a}t Potsdam}, pages = {xix, 193}, year = {2018}, abstract = {The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. Flow processes were observed either based on response observations (soil moisture changes or discharge patterns) or direct measurement (advective heat transport). Based on these data, the flow-relevance of the characteristic structures was evaluated, especially with regard to hillslope to stream connectivity. Results of the four studies revealed a clear relationship between characteristic spatial structures and the hydrological behavior of the catchment. Especially the spatial distribution of structures throughout the study domain and their interconnectedness were crucial for the establishment of preferential flow paths and their relevance for large-scale processes. Plot and hillslope-scale irrigation experiments showed that the macropores of a heterogeneous, skeletal soil enabled preferential flow paths at the scale of centimeters through the otherwise unsaturated soil. These flow paths connected throughout the soil column and across the hillslope and facilitated substantial amounts of vertical and lateral flow through periglacial slope deposits. In the riparian zone of the same headwater catchment, the connectivity between hillslopes and stream was controlled by topography and the dualism between characteristic subsurface structures and the geomorphological heterogeneity of the stream channel. At the small scale (1 m to 10 m) highest gains always occurred at steps along the longitudinal streambed profile, which also controlled discharge patterns at the large scale (100 m) during base flow conditions (number of steps per section). During medium and high flow conditions, however, the impact of topography and parafluvial flow through riparian zone structures prevailed and dominated the large-scale response patterns. In the streambed of a lowland river, low permeability peat layers affected the connectivity between surface water and groundwater, but also between surface water and the hyporheic zone. The crucial factor was not the permeability of the streambed itself, but rather the spatial arrangement of flow-impeding peat layers, causing increased vertical flow through narrow "windows" in contrast to predominantly lateral flow in extended areas of high hydraulic conductivity sediments. These results show that the spatial organization of structures was an important control for hydrological processes at all scales and study areas. In a final step, the observations from different scales and catchment elements were put in relation and compared. The main focus was on the theoretical analysis of the scale hierarchies of structures and processes and the direction of causal dependencies in this context. Based on the resulting hierarchical structure, a conceptual framework was developed which is capable of representing the system's complexity while allowing for adequate simplifications. The resulting concept of the parabolic scale series is based on the insight that flow processes in the terrestrial part of the catchment (soil and hillslopes) converge. This means that small-scale processes assemble and form large-scale processes and responses. Processes in the riparian zone and the streambed, however, are not well represented by the idea of convergence. Here, the large-scale catchment signal arrives and is modified by structures in the riparian zone, stream morphology, and the small-scale interactions between surface water and groundwater. Flow paths diverge and processes can better be represented by proceeding from large scales to smaller ones. The catchment-scale representation of processes and structures is thus the conceptual link between terrestrial hillslope processes and processes in the riparian corridor.}, language = {en} } @phdthesis{Sieg2018, author = {Sieg, Tobias}, title = {Reliability of flood damage estimations across spatial scales}, doi = {10.25932/publishup-42616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426161}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 115}, year = {2018}, abstract = {Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren f{\"u}r die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings k{\"o}nnen Naturgefahren verheerende Folgen f{\"u}r die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterst{\"u}rme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer w{\"a}rmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren ausl{\"o}sen k{\"o}nnen, immer wahrscheinlicher. Allerdings tr{\"a}gt nicht nur eine sich ver{\"a}ndernde Umwelt zur Erh{\"o}hung des Risikos von Naturgefahren bei, sondern auch eine sich ver{\"a}ndernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder r{\"a}umlichen Ebene an diese Ver{\"a}nderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Absch{\"a}tzung der {\"o}konomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verl{\"a}ssliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzusch{\"a}tzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verl{\"a}sslichkeit der Schadenssch{\"a}tzung verbessert. Die Methode wurde beispielhaft zur Sch{\"a}tzung der {\"o}konomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information {\"u}ber die Verl{\"a}sslichkeit ihrer Sch{\"a}tzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verl{\"a}sslichkeit der Schadenssch{\"a}tzungen mit der neuen Methode dargestellt. Die Verl{\"a}sslichkeit bezieht sich dabei nicht nur auf die Schadenssch{\"a}tzung selber, sondern auch auf die Annahmen, die {\"u}ber betroffene Geb{\"a}ude gemacht werden. Nach diesem Prinzip kann auch die Verl{\"a}sslichkeit von Annahmen {\"u}ber die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt f{\"u}r Prognosen. Die Darstellung der Verl{\"a}sslichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen f{\"u}r gegenw{\"a}rtige und zuk{\"u}nftige hydro-meteorologische Gefahren.}, language = {en} } @phdthesis{Heinecke2018, author = {Heinecke, Liv}, title = {Environmental change in the Eastern Pamir Mountains during last 28 cal ka BP}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2018}, language = {en} } @phdthesis{Meier2017, author = {Meier, Tobias}, title = {Borehole Breakouts in Transversely Isotropic Posidonia Shale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400019}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2017}, abstract = {Borehole instabilities are frequently encountered when drilling through finely laminated, organic rich shales ({\O}kland and Cook, 1998; Ottesen, 2010; etc.); such instabilities should be avoided to assure a successful exploitation and safe production of the contained unconventional hydrocarbons. Borehole instabilities, such as borehole breakouts or drilling induced tensile fractures, may lead to poor cementing of the borehole annulus, difficulties with recording and interpretation of geophysical logs, low directional control and in the worst case the loss of the well. If these problems are not recognized and expertly remedied, pollution of the groundwater or the emission of gases into the atmosphere can occur since the migration paths of the hydrocarbons in the subsurface are not yet fully understood (e.g., Davies et al., 2014; Zoback et al., 2010). In addition, it is often mentioned that the drilling problems encountered and the resulting downtimes of the wellbore system in finely laminated shales significantly increase drilling costs (Fjaer et al., 2008; Aadnoy and Ong, 2003). In order to understand and reduce the borehole instabilities during drilling in unconventional shales, we investigate stress-induced irregular extensions of the borehole diameter, which are also referred to as borehole breakouts. For this purpose, experiments with different borehole diameters, bedding plane angles and stress boundary conditions were performed on finely laminated Posidonia shales. The Lower Jurassic Posidonia shale is one of the most productive source rocks for conventional reservoirs in Europe and has the greatest potential for unconventional oil and gas in Europe (Littke et al., 2011). In this work, Posidonia shale specimens from the North (PN) and South (PS) German basins were selected and characterized petrophysically and mechanically. The composition of the two shales is dominated by calcite (47-56\%) followed by clays (23-28\%) and quartz (16-17\%). The remaining components are mainly pyrite and organic matter. The porosity of the shales varies considerably and is up to 10\% for PS and 1\% for PN, which is due to a larger deposition depth of PN. Both shales show marked elasticity and strength anisotropy, which can be attributed to a macroscopic distribution and orientation of soft and hard minerals. Under load the hard minerals form a load-bearing, supporting structure, while the soft minerals compensate the deformation. Therefore, if loaded parallel to the bedding, the Posidonia shale is more brittle than loaded normal to the bedding. The resulting elastic anisotropy, which can be defined by the ratio of the modulus of elasticity parallel and normal to the bedding, is about 50\%, while the strength anisotropy (i.e., the ratio of uniaxial compressive strength normal and parallel to the bedding) is up to 66\%. Based on the petrophysical characterization of the two rocks, a transverse isotropy (TVI) was derived. In general, PS is softer and weaker than PN, which is due to the stronger compaction of the material due to the higher burial depth. Conventional triaxial borehole breakout experiments on specimens with different borehole diameters showed that, when the diameter of the borehole is increased, the stress required to initiate borehole breakout decreases to a constant value. This value can be expressed as the ratio of the tangential stress and the uniaxial compressive strength of the rock. The ratio increases exponentially with decreasing borehole diameter from about 2.5 for a 10 mm diameter hole to ~ 7 for a 1 mm borehole (increase of initiation stress by 280\%) and can be described by a fracture mechanic based criterion. The reduction in borehole diameter is therefore a considerable aspect in reducing the risk of breakouts. New drilling techniques with significantly reduced borehole diameters, such as "fish-bone" holes, are already underway and are currently being tested (e.g., Xing et al., 2012). The observed strength anisotropy and the TVI material behavior are also reflected in the observed breakout processes at the borehole wall. Drill holes normal to the bedding develop breakouts in a plane of isotropy and are not affected by the strength or elasticity anisotropy. The observed breakouts are point-symmetric and form compressive shear failure planes, which can be predicted by a Mohr-Coulomb failure approach. If the shear failure planes intersect, conjugate breakouts can be described as "dog-eared" breakouts. While the initiation of breakouts for wells oriented normal to the stratification has been triggered by random local defects, reduced strengths parallel to bedding planes are the starting point for breakouts for wells parallel to the bedding. In the case of a deflected borehole trajectory, therefore, the observed failure type changes from shear-induced failure surfaces to buckling failure of individual layer packages. In addition, the breakout depths and widths increased, resulting in a stress-induced enlargement of the borehole cross-section and an increased output of rock material into the borehole. With the transition from shear to buckling failure and changing bedding plane angle with respect to the borehole axis, the stress required for inducing wellbore breakouts drops by 65\%. These observations under conventional triaxial stress boundary conditions could also be confirmed under true triaxial stress conditions. Here breakouts grew into the rock as a result of buckling failure, too. In this process, the broken layer packs rotate into the pressure-free drill hole and detach themselves from the surrounding rock by tensile cracking. The final breakout shape in Posidonia shale can be described as trapezoidal when the bedding planes are parallel to the greatest horizontal stress and to the borehole axis. In the event that the largest horizontal stress is normal to the stratification, breakouts were formed entirely by shear fractures between the stratification and required higher stresses to initiate similar to breakouts in conventional triaxial experiments with boreholes oriented normal to the bedding. In the content of this work, a fracture mechanics-based failure criterion for conventional triaxial loading conditions in isotropic rocks (Dresen et al., 2010) has been successfully extended to true triaxial loading conditions in the transverse isotropic rock to predict the initiation of borehole breakouts. The criterion was successfully verified on the experiments carried out. The extended failure criterion and the conclusions from the laboratory and numerical work may help to reduce the risk of borehole breakouts in unconventional shales.}, language = {en} } @phdthesis{Weege2017, author = {Weege, Stefanie}, title = {Climatic drivers of retrogressive thaw slump activity and resulting sediment and carbon release to the nearshore zone of Herschel Island, Yukon Territory, Canada}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397947}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2017}, abstract = {The Yukon Coast in Canada is an ice-rich permafrost coast and highly sensitive to changing environmental conditions. Retrogressive thaw slumps are a common thermoerosion feature along this coast, and develop through the thawing of exposed ice-rich permafrost on slopes and removal of accumulating debris. They contribute large amounts of sediment, including organic carbon and nitrogen, to the nearshore zone. The objective of this study was to 1) identify the climatic and geomorphological drivers of sediment-meltwater release, 2) quantify the amount of released meltwater, sediment, organic carbon and nitrogen, and 3) project the evolution of sediment-meltwater release of retrogressive thaw slumps in a changing future climate. The analysis is based on data collected over 18 days in July 2013 and 18 days in August 2012. A cut-throat flume was set up in the main sediment-meltwater channel of the largest retrogressive thaw slump on Herschel Island. In addition, two weather stations, one on top of the undisturbed tundra and one on the slump floor, measured incoming solar radiation, air temperature, wind speed and precipitation. The discharge volume eroding from the ice-rich permafrost and retreating snowbanks was measured and compared to the meteorological data collected in real time with a resolution of one minute. The results show that the release of sediment-meltwater from thawing of the ice-rich permafrost headwall is strongly related to snowmelt, incoming solar radiation and air temperature. Snowmelt led to seasonal differences, especially due to the additional contribution of water to the eroding sediment-meltwater from headwall ablation, lead to dilution of the sediment-meltwater composition. Incoming solar radiation and air temperature were the main drivers for diurnal and inter-diurnal fluctuations. In July (2013), the retrogressive thaw slump released about 25 000 m³ of sediment-meltwater, containing 225 kg dissolved organic carbon and 2050 t of sediment, which in turn included 33 t organic carbon, and 4 t total nitrogen. In August (2012), just 15 600 m³ of sediment-meltwater was released, since there was no additional contribution from snowmelt. However, even without the additional dilution, 281 kg dissolved organic carbon was released. The sediment concentration was twice as high as in July, with sediment contents of up to 457 g l-1 and 3058 t of sediment, including 53 t organic carbon and 5 t nitrogen, being released. In addition, the data from the 36 days of observations from Slump D were upscaled to cover the main summer season of 1 July to 31 August (62 days) and to include all 229 active retrogressive thaw slumps along the Yukon Coast. In total, all retrogressive thaw slumps along the Yukon Coast contribute a minimum of 1.4 Mio. m³ sediment-meltwater each thawing season, containing a minimum of 172 000 t sediment with 3119 t organic carbon, 327 t nitrogen and 17 t dissolved organic carbon. Therefore, in addition to the coastal erosion input to the Beaufort Sea, retrogressive thaw slumps additionally release 3 \% of sediment and 8 \% of organic carbon into the ocean. Finally, the future evolution of retrogressive thaw slumps under a warming scenario with summer air temperatures increasing by 2-3 °C by 2081-2100, would lead to an increase of 109-114\% in release of sediment-meltwater. It can be concluded that retrogressive thaw slumps are sensitive to climatic conditions and under projected future Arctic warming will contribute larger amounts of thawed permafrost material (including organic carbon and nitrogen) into the environment.}, language = {en} } @phdthesis{Korzeniowska2017, author = {Korzeniowska, Karolina}, title = {Object-based image analysis for detecting landforms diagnostic of natural hazards}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402240}, school = {Universit{\"a}t Potsdam}, pages = {XV, 139}, year = {2017}, abstract = {Natural and potentially hazardous events occur on the Earth's surface every day. The most destructive of these processes must be monitored, because they may cause loss of lives, infrastructure, and natural resources, or have a negative effect on the environment. A variety of remote sensing technologies allow the recoding of data to detect these processes in the first place, partly based on the diagnostic landforms that they form. To perform this effectively, automatic methods are desirable. Universal detection of natural hazards is challenging due to their differences in spatial impacts, timing and longevity of consequences, and the spatial resolution of remote-sensing data. Previous studies have reported that topographic metrics such as roughness, which can be captured from digital elevation data, can reveal landforms diagnostic of natural hazards, such as gullies, dunes, lava fields, landslides and snow avalanches, as these landforms tend to be more heterogeneous than the surrounding landscape. A single roughness metric is often limited in such detections; however, a more complex approach that exploits the spatial relation and the location of objects, such as object-based image analysis (OBIA), is desirable. In this thesis, I propose a topographic roughness measure derived from an airborne laser scanning (ALS) digital terrain model (DTM) and discuss its performance in detecting landforms principally diagnostic of natural hazards. I further develop OBIA-based algorithms for the detection of snow avalanches using near-infrared (NIR) aerial images, and the size (changes) of mountain lakes using LANDSAT satellite images. I quantitatively test and document how the level of difficulty in detecting these very challenging landforms depends on the input data resolution, the derivatives that could be evaluated from images and DTMs, the size, shape and complexity of landforms, and the capabilities of obtaining the information in the data. I demonstrate that surface roughness is a promising metric for detecting different landforms in diverse environments, and that OBIA assists significantly in detecting parts of lakes and snow avalanches that may not be correctly assigned by applying only the thresholding of spectral properties of data and their derivatives. The curvature-based surface roughness parameter allows the detection of gullies, dunes, lava fields and landslides with a user's accuracy of 0.63, 0.21, 0.53, and 0.45, respectively. The OBIA algorithms for detecting lakes and snow avalanches obtained user's accuracy of 0.98, and 0.78, respectively. Most of the analysed landforms constituted only a small part of the entire dataset, and therefore the user's accuracy is the most appropriate performance measure that should be given in a such classification, because it tells how many automatically-extracted pixels in fact represent the object that one wants to classify, and its calculation does not take the second (background) class into account. One advantage of the proposed roughness parameter is that it allows the extraction of the heterogeneity of the surface without the need for data detrending. The OBIA approach is novel in that it allows the classification of lakes regardless of the physical state of their water, and also allows the separation of frozen lakes from glaciers that have very similar water indices used in purely optical remote sensing applications. The algorithm proposed for snow avalanches allows the detection of release zones, tracks, and deposition zones by verifying the snow heterogeneity based on a roughness metric evaluated from a water index, and by analysing the local relation of segments with their neighbouring objects. This algorithm contains few steps, which allows for the simultaneous classification of avalanches that occur on diverse mountain slopes and differ in size and shape. This thesis contributes to natural hazard research as it provides automatic solutions to tracking six different landforms that are diagnostic of natural hazards over large regions. This is a step toward delineating areas susceptible to the processes producing these landforms and the improvement of hazard maps.}, language = {en} } @phdthesis{Irrgang2017, author = {Irrgang, Anna Maria}, title = {Temporal and spatial dynamics of Arctic coastal changes and the resulting impacts: Yukon Territory, Canada}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2017}, language = {en} } @phdthesis{Tanski2017, author = {Tanski, George}, title = {Fate of organic matter mobilized from eroding permafrost coasts}, school = {Universit{\"a}t Potsdam}, pages = {IX, 106, 57 S.}, year = {2017}, language = {en} } @phdthesis{OseiTutu2017, author = {Osei Tutu, Anthony}, title = {Linking global mantle dynamics with lithosphere dynamics using the geoid, plate velocities and lithosphere stress state as constraints}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407057}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2017}, abstract = {Lithospheric plates move over the low viscosity asthenosphere balancing several forces. The driving forces include basal shear stress exerted by mantle convection and plate boundary forces such as slab pull and ridge push, whereas the resisting forces include inter-plate friction, trench resistance, and cratonic root resistance. These generate plate motions, the lithospheric stress field and dynamic topography which are observed with different geophysical methods. The orientation and tectonic regime of the observed crustal/lithospheric stress field further contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. Using numerical models previous studies were able to identify major forces generating stresses in the crust and lithosphere which also contribute to the formation of topography as well as driving lithospheric plates. They showed that the first-order stress pattern explaining about 80\,\\% of the stress field originates from a balance of forces acting at the base of the moving lithospheric plates due to convective flow in the underlying mantle. The remaining second-order stress pattern is due to lateral density variations in the crust and lithosphere in regions of pronounced topography and high gravitational potential, such as the Himalayas and mid-ocean ridges. By linking global lithosphere dynamics to deep mantle flow this study seeks to evaluate the influence of shallow and deep density heterogenities on plate motions, lithospheric stress field and dynamic topography using the geoid as a major constraint for mantle rheology. We use the global 3D lithosphere-asthenosphere model SLIM3D with visco-elasto-plastic rheology coupled at 300 km depth to a spectral model of mantle flow. The complexity of the lithosphere-asthenosphere component allows for the simulation of power-law rheology with creep parameters accounting for both diffusion and dislocation creep within the uppermost 300 km. First we investigate the influence of intra-plate friction and asthenospheric viscosity on present-day plate motions. Previous modelling studies have suggested that small friction coefficients (µ < 0.1, yield stress ~ 100 MPa) can lead to plate tectonics in models of mantle convection. Here we show that, in order to match present-day plate motions and net rotation, the frictional parameter must be less than 0.05. We are able to obtain a good fit with the magnitude and orientation of observed plate velocities (NUVEL-1A) in a no-net-rotation (NNR) reference frame with µ < 0.04 and minimum asthenosphere viscosity ~ 5*10e19 Pas to 10e20 Pas. Our estimates of net rotation (NR) of the lithosphere suggest that amplitudes ~ 0.1-0.2 °/Ma, similar to most observation-based estimates, can be obtained with asthenosphere viscosity cutoff values of ~ 10e19 Pas to 5*10e19 Pas and friction coefficient µ < 0.05. The second part of the study investigates further constraints on shallow and deep mantle heterogeneities causing plate motion by predicting lithosphere stress field and topography and validating with observations. Lithosphere stresses and dynamic topography are computed using the modelling setup and rheological parameters for prescribed plate motions. We validate our results with the World Stress Map 2016 (WSM2016) and the observed residual topography. Here we tested a number of upper mantle thermal-density structures. The one used to calculate plate motions is considered the reference thermal-density structure. This model is derived from a heat flow model combined with a sea floor age model. In addition we used three different thermal-density structures derived from global S-wave velocity models to show the influence of lateral density heterogeneities in the upper 300 km on model predictions. A large portion of the total dynamic force generating stresses in the crust/lithosphere has its origin in the deep mantle, while topography is largely influenced by shallow heterogeneities. For example, there is hardly any difference between the stress orientation patterns predicted with and without consideration of the heterogeneities in the upper mantle density structure across North America, Australia, and North Africa. However, the crust is dominant in areas of high altitude for the stress orientation compared to the all deep mantle contribution. This study explores the sensitivity of all the considered surface observables with regards to model parameters providing insights into the influence of the asthenosphere and plate boundary rheology on plate motion as we test various thermal-density structures to predict stresses and topography.}, language = {en} } @phdthesis{Bredow2017, author = {Bredow, Eva}, title = {Geodynamic models of plume-ridge interaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411732}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2017}, abstract = {According to the classical plume hypothesis, mantle plumes are localized upwellings of hot, buoyant material in the Earth's mantle. They have a typical mushroom shape, consisting of a large plume head, which is associated with the formation of voluminous flood basalts (a Large Igneous Province) and a narrow plume tail, which generates a linear, age-progressive chain of volcanic edifices (a hotspot track) as the tectonic plate migrates over the relatively stationary plume. Both plume heads and tails reshape large areas of the Earth's surface over many tens of millions of years. However, not every plume has left an exemplary record that supports the classical hypothesis. The main objective of this thesis is therefore to study how specific hotspots have created the crustal thickness pattern attributed to their volcanic activities. Using regional geodynamic models, the main chapters of this thesis address the challenge of deciphering the three individual (and increasingly complex) Réunion, Iceland, and Kerguelen hotspot histories, especially focussing on the interactions between the respective plume and nearby spreading ridges. For this purpose, the mantle convection code ASPECT is used to set up three-dimensional numerical models, which consider the specific local surroundings of each plume by prescribing time-dependent boundary conditions for temperature and mantle flow. Combining reconstructed plate boundaries and plate motions, large-scale global flow velocities and an inhomogeneous lithosphere thickness distribution together with a dehydration rheology represents a novel setup for regional convection models. The model results show the crustal thickness pattern produced by the plume, which is compared to present-day topographic structures, crustal thickness estimates and age determinations of volcanic provinces associated with hotspot activity. Altogether, the model results agree well with surface observations. Moreover, the dynamic development of the plumes in the models provide explanations for the generation of smaller, yet characteristic volcanic features that were previously unexplained. Considering the present-day state of a model as a prediction for the current temperature distribution in the mantle, it cannot only be compared to observations on the surface, but also to structures in the Earth's interior as imaged by seismic tomography. More precisely, in the case of the Réunion hotspot, the model demonstrates how the distinctive gap between the Maldives and Chagos is generated due to the combination of the ridge geometry and plume-ridge interaction. Further, the Rodrigues Ridge is formed as the surface expression of a long-distance sublithospheric flow channel between the upwelling plume and the closest ridge segment, confirming the long-standing hypothesis of Morgan (1978) for the first time in a dynamic context. The Réunion plume has been studied in connection with the seismological RHUM-RUM project, which has recently provided new seismic tomography images that yield an excellent match with the geodynamic model. Regarding the Iceland plume, the numerical model shows how plume material may have accumulated in an east-west trending corridor of thin lithosphere across Greenland and resulted in simultaneous melt generation west and east of Greenland. This provides an explanation for the extremely widespread volcanic material attributed to magma production of the Iceland hotspot and demonstrates that the model setup is also able to explain more complicated hotspot histories. The Iceland model results also agree well with newly derived seismic tomographic images. The Kerguelen hotspot has an extremely complex history and previous studies concluded that the plume might be dismembered or influenced by solitary waves in its conduit to produce the reconstructed variable melt production rate. The geodynamic model, however, shows that a constant plume influx can result in a variable magma production rate if the plume interacts with nearby mid-ocean ridges. Moreover, the Ninetyeast Ridge in the model is created by on-ridge activities, while the Kerguelen plume was located beneath the Australian plate. This is also a contrast to earlier studies, which described the Ninetyeast Ridge as the result of the Indian plate passing over the plume. Furthermore, the Amsterdam-Saint Paul Plateau in the model is the result of plume material flowing from the upwelling toward the Southeast Indian Ridge, whereas previous geochemical studies attributed that volcanic province to a separate deep plume. In summary, the three case studies presented in this thesis consistently highlight the importance of plume-ridge interaction in order to reconstruct the overall volcanic hotspot record as well as specific smaller features attributed to a certain hotspot. They also demonstrate that it is not necessary to attribute highly complicated properties to a specific plume in order to account for complex observations. Thus, this thesis contributes to the general understanding of plume dynamics and extends the very specific knowledge about the Réunion, Iceland, and Kerguelen mantle plumes.}, language = {en} } @phdthesis{Richter2017, author = {Richter, Nicole}, title = {Investigating hazards and the evolution of volcanic landscapes by means of terrestrial and satellite remote sensing data and modelling}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2017}, language = {en} } @phdthesis{Muldashev2017, author = {Muldashev, Iskander}, title = {Modeling of the great earthquake seismic cycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398926}, school = {Universit{\"a}t Potsdam}, pages = {xii, 117}, year = {2017}, abstract = {The timing and location of the two largest earthquakes of the 21st century (Sumatra, 2004 and Tohoku 2011, events) greatly surprised the scientific community, indicating that the deformation processes that precede and follow great megathrust earthquakes remain enigmatic. During these phases before and after the earthquake a combination of multi-scale complex processes are acting simultaneously: Stresses built up by long-term tectonic motions are modified by sudden jerky deformations during earthquakes, before being restored by multiple ensuing relaxation processes. This thesis details a cross-scale thermomechanical model developed with the aim of simulating the entire subduction process from earthquake (1 minute) to million years' time scale, excluding only rupture propagation. The model employs elasticity, non-linear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. The model is thoroughly tested by comparing results to those from known high- resolution solutions of generic modeling setups widely used in modeling of rupture propagation. It is demonstrated, that while not modeling rupture propagation explicitly, the modeling procedure correctly recognizes the appearance of instability (earthquake) and correctly simulates the cumulative slip at a fault during great earthquake by means of a quasi-dynamic approximation. A set of 2D models is used to study the effects of non-linear transient rheology on the postseismic processes following great earthquakes. Our models predict that the viscosity in the mantle wedge drops by 3 to 4 orders of magnitude during a great earthquake with magnitude above 9. This drop in viscosity results in spatial scales and timings of the relaxation processes following the earthquakes that are significantly different to previous estimates. These models replicate centuries long seismic cycles exhibited by the greatest earthquakes (like the Great Chile 1960 Earthquake) and are consistent with the major features of postseismic surface displacements recorded after the Great Tohoku Earthquake. The 2D models are also applied to study key factors controlling maximum magnitudes of earthquakes in subduction zones. Even though methods of instrumentally observing earthquakes at subduction zones have rapidly improved in recent decades, the characteristic recurrence interval of giant earthquakes (Mw>8.5) is much larger than the currently available observational record and therefore the necessary conditions for giant earthquakes are not clear. Statistical studies have recognized the importance of the slab shape and its surface roughness, state of the strain of the upper plate and thickness of sediments filling the trenches. In this thesis we attempt to explain these observations and to identify key controlling parameters. We test a set of 2D models representing great earthquake seismic cycles at known subduction zones with various known geometries, megathrust friction coefficients, and convergence rates implemented. We found that low-angle subduction (large effect) and thick sediments in the subduction channel (smaller effect) are the fundamental necessary conditions for generating giant earthquakes, while the change of subduction velocity from 10 to 3.5 cm/yr has a lower effect. Modeling results also suggest that having thick sediments in the subduction channel causes low static friction, resulting in neutral or slightly compressive deformation in the overriding plate for low-angle subduction zones. These modeling results agree well with observations for the largest earthquakes. The model predicts the largest possible earthquakes for subduction zones of given dipping angles. The predicted maximum magnitudes exactly threshold magnitudes of all known giant earthquakes of 20th and 21st centuries. The clear limitation of most of the models developed in the thesis is their 2D nature. Development of 3D models with comparable resolution and complexity will require significant advances in numerical techniques. Nevertheless, we conducted a series of low-resolution 3D models to study the interaction between two large asperities at a subduction interface separated by an aseismic gap of varying width. The novelty of the model is that it considers behavior of the asperities during multiple seismic cycles. As expected, models show that an aseismic gap with a narrow width could not prevent rupture propagation from one asperity to another, and that rupture always crosses the entire model. When the gap becomes too wide, asperities do not interact anymore and rupture independently. However, an interesting mode of interaction was observed in the model with an intermediate width of the aseismic gap: In this model the asperities began to stably rupture in anti-phase following multiple seismic cycles. These 3D modeling results, while insightful, must be considered preliminary because of the limitations in resolution. The technique developed in this thesis for cross-scale modeling of seismic cycles can be used to study the effects of multiple seismic cycles on the long-term deformation of the upper plate. The technique can be also extended to the case of continental transform faults and for the advanced 3D modeling of specific subduction zones. This will require further development of numerical techniques and adaptation of the existing advanced highly scalable parallel codes like LAMEM and ASPECT.}, language = {en} } @phdthesis{Hendriyana2017, author = {Hendriyana, Andri}, title = {Detection and Kirchhoff-type migration of seismic events by use of a new characteristic function}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398879}, school = {Universit{\"a}t Potsdam}, pages = {v, 139}, year = {2017}, abstract = {The classical method of seismic event localization is based on the picking of body wave arrivals, ray tracing and inversion of travel time data. Travel time picks with small uncertainties are required to produce reliable and accurate results with this kind of source localization. Hence recordings, with a low Signal-to-Noise Ratio (SNR) cannot be used in a travel time based inversion. Low SNR can be related with weak signals from distant and/or low magnitude sources as well as with a high level of ambient noise. Diffraction stacking is considered as an alternative seismic event localization method that enables also the processing of low SNR recordings by mean of stacking the amplitudes of seismograms along a travel time function. The location of seismic event and its origin time are determined based on the highest stacked amplitudes (coherency) of the image function. The method promotes an automatic processing since it does not need travel time picks as input data. However, applying diffraction stacking may require longer computation times if only limited computer resources are used. Furthermore, a simple diffraction stacking of recorded amplitudes could possibly fail to locate the seismic sources if the focal mechanism leads to complex radiation patterns which typically holds for both natural and induced seismicity. In my PhD project, I have developed a new work flow for the localization of seismic events which is based on a diffraction stacking approach. A parallelized code was implemented for the calculation of travel time tables and for the determination of an image function to reduce computation time. In order to address the effects from complex source radiation patterns, I also suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original wave form data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. I demonstrate that, the performance of the mAIC does not depend on the chosen length of the analyzed time window and that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P- and S-waves due to inaccurate velocity models, I separate the P- and S-waves from the mAIC function by making use of polarization attributes. Then, eventually the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Before applying diffraction stacking, I also apply seismogram denoising by using Otsu thresholding in the time-frequency domain. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results even from seismograms with low SNR=1. Tests with different presentations of the synthetic seismograms (displacement, velocity, and acceleration) shown that, acceleration seismograms deliver better results in case of high SNR, whereas displacement seismograms provide more accurate results in case of low SNR recordings. In another test, different measures (maximum amplitude, other statistical parameters) were used to determine the source location in the final image function. I found that the statistical approach is the preferred method particularly for low SNR. The work flow of my diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for 9 months around the Tarutung pull-apart Basin were analyzed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung Basin. Two lineaments striking N-S were found in the middle of the Tarutung Basin which support independent results from structural geology. These features are interpreted as opening fractures due to local extension. A cluster of seismic events repeatedly occurred in short time which might be related to fluid drainage since two hot springs are observed at the surface near to this cluster.}, language = {en} } @phdthesis{Ziegler2017, author = {Ziegler, Moritz O.}, title = {The 3D in-situ stress field and its changes in geothermal reservoirs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403838}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 110, XV}, year = {2017}, abstract = {Information on the contemporary in-situ stress state of the earth's crust is essential for geotechnical applications and physics-based seismic hazard assessment. Yet, stress data records for a data point are incomplete and their availability is usually not dense enough to allow conclusive statements. This demands a thorough examination of the in-situ stress field which is achieved by 3D geomechanicalnumerical models. However, the models spatial resolution is limited and the resulting local stress state is subject to large uncertainties that confine the significance of the findings. In addition, temporal variations of the in-situ stress field are naturally or anthropogenically induced. In my thesis I address these challenges in three manuscripts that investigate (1) the current crustal stress field orientation, (2) the 3D geomechanical-numerical modelling of the in-situ stress state, and (3) the phenomenon of injection induced temporal stress tensor rotations. In the first manuscript I present the first comprehensive stress data compilation of Iceland with 495 data records. Therefore, I analysed image logs from 57 boreholes in Iceland for indicators of the orientation of the maximum horizontal stress component. The study is the first stress survey from different kinds of stress indicators in a geologically very young and tectonically active area of an onshore spreading ridge. It reveals a distinct stress field with a depth independent stress orientation even very close to the spreading centre. In the second manuscript I present a calibrated 3D geomechanical-numerical modelling approach of the in-situ stress state of the Bavarian Molasse Basin that investigates the regional (70x70x10km³) and local (10x10x10km³) stress state. To link these two models I develop a multi-stage modelling approach that provides a reliable and efficient method to derive from the larger scale model initial and boundary conditions for the smaller scale model. Furthermore, I quantify the uncertainties in the models results which are inherent to geomechanical-numerical modelling in general and the multi-stage approach in particular. I show that the significance of the models results is mainly reduced due to the uncertainties in the material properties and the low number of available stress magnitude data records for calibration. In the third manuscript I investigate the phenomenon of injection induced temporal stress tensor rotation and its controlling factors. I conduct a sensitivity study with a 3D generic thermo-hydro-mechanical model. I show that the key control factors for the stress tensor rotation are the permeability as the decisive factor, the injection rate, and the initial differential stress. In particular for enhanced geothermal systems with a low permeability large rotations of the stress tensor are indicated. According to these findings the estimation of the initial differential stress in a reservoir is possible provided the permeability is known and the angle of stress rotation is observed. I propose that the stress tensor rotations can be a key factor in terms of the potential for induced seismicity on pre-existing faults due to the reorientation of the stress field that changes the optimal orientation of faults.}, language = {en} } @phdthesis{Otto2017, author = {Otto, Christopher}, title = {Numerical analysis of thermal, hydraulic and mechanical processes in the near- and far-field of underground coal gasification reactors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404625}, school = {Universit{\"a}t Potsdam}, pages = {XII, 115}, year = {2017}, abstract = {Die Untertagevergasung von Kohle (UTV) erm{\"o}glicht die Erschließung konventionell nicht f{\"o}rderbarer Kohleressourcen und bietet dadurch Potenzial zur Erh{\"o}hung der weltweiten Kohlereserven. Bei der in-situ Kohleumwandlung entsteht ein hochkalorisches Synthesegas, das elektrifiziert oder zur Gewinnung chemischer Rohstoffe und synthetischer Kraftstoffe eingesetzt werden kann. Neben den wirtschaftlichen M{\"o}glichkeiten, bestehen jedoch auch standort-spezifische Umweltgef{\"a}hrdungspotentiale durch Subsidenz und Schadstoffmigration von UTV-R{\"u}ckst{\"a}nden in nutzbare Grundwasserleiter. Eine nachhaltige und effiziente UTV erfordert ein umfangreiches Verst{\"a}ndnis der thermisch, hydraulisch und mechanisch gekoppelten Prozesse im UTV-Reaktornahbereich. Aufgrund der hohen Investitionskosten von UTV-Pilotanlagen, sind numerische Simulationen gekoppelter Prozesse von entscheidender Bedeutung f{\"u}r die Bewertung m{\"o}glicher UTV-Umweltauswirkungen. Im Rahmen dieser Arbeit wird die UTV-induzierte Permeabilit{\"a}tsver{\"a}nderung, Erzeugung m{\"o}glicher hydraulischer Kurzschl{\"u}sse benachbarter Reaktoren und Dynamik nicht-isothermer Multiphasenfl{\"u}sse mit gekoppelten Simulationen analysiert. Die Simulationsergebnisse zeigen, dass eine Implementierung temperaturabh{\"a}ngiger thermo-mechanischer Gesteinsparameter nur f{\"u}r Untersuchungen von Permeabilit{\"a}ts-{\"a}nderungen im Reaktornachbereich notwendig ist. Die Ergebnisse erlauben somit eine recheneffiziente Realisierung von komplexen thermo-mechanisch gekoppelten Simulations-studien regionalskaliger Modelle mit konstanten Gesteinsparametern, bei nahezu gleichbleibender Ergebnisgenauigkeit, die zur Bewertung von UTV-Umweltgef{\"a}hrdungs-potenzialen beitragen. Simulationen zur Ausbildung hydraulischer Kurzschl{\"u}sse zwischen einzelnen UTV-Reaktoren auf regionaler Skala, verdeutlichen die Relevanz von geologischen St{\"o}rungen an einem UTV-Standort, da diese durch Reaktivierung hydraulische Verbindungen induzieren und somit einen effizienten und nachhaltigen UTV-Betrieb negativ beeintr{\"a}chtigen k{\"o}nnen. In diesem Zusammenhang kommt der Ausbildung einer Wasserdampfphase, der sogenannte „steam jacket", im Hochtemperaturnahbereich von UTV-Reaktoren, als potenzielle Barriere zur Vermeidung von UTV-Schadstoffaustritten und zur potenziellen Minimierung von Energieverlusten eine entscheidende Bedeutung zu. Diese steam jackets entstehen durch evaporiertes Formationswasser und sind komplexe nicht-isotherme Multiphasenfluss-Ph{\"a}nomene. F{\"u}r ein verbessertes Prozessverst{\"a}ndnis dieser Multiphasenfl{\"u}sse, wurde ein neuartiges Modellkonzept entwickelt, welches, validiert gegen Feldversuchsdaten, erstmals sowohl eine Quantifizierung als auch Prognose von Wasserflussraten in und aus einem UTV-Reaktor erlaubt. Die Ergebnisse der vorgelegten Doktorarbeit bilden eine wichtige Grundlage f{\"u}r eine erfolgreiche Integration gekoppelter thermo-hydro-mechanischer Simulationen in weiterf{\"u}hrende Studien. Vor dem Hintergrund hoher UTV-Umweltgef{\"a}hrdungspotentiale, k{\"o}nnen diese zur verbesserten Bewertung und Minderung von UTV-Umweltauswirkungen beitragen, sowie die UTV-Effizienz nachhaltig optimieren.}, language = {en} } @phdthesis{Nitze2017, author = {Nitze, Ingmar}, title = {Remote sensing of rapid permafrost landscape dynamics}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2017}, language = {en} } @phdthesis{Horn2017, author = {Horn, Juliane}, title = {A modelling framework for exploration of a multidimensional factor causing decline in honeybee health}, school = {Universit{\"a}t Potsdam}, pages = {221}, year = {2017}, language = {en} } @phdthesis{Zhou2017, author = {Zhou, Bin}, title = {On the assessment of surface urban heat island}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404383}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 119}, year = {2017}, abstract = {Inwiefern St{\"a}dte unter den Megatrends der Urbanisierung und des Klimawandels nachhaltig gestaltet werden k{\"o}nnen, bleibt umstritten. Dies ist zum Teil auf unzureichende Kenntnisse der Mensch-Umwelt-Interaktionen zur{\"u}ckzuf{\"u}hren. Als die am vollst{\"a}ndigsten dokumentierte anthropogene Klimamodifikation ruft der Urbane Hitzeinsel (UHI) Effekt weltweit Sorgen hinsichtlich der Gesundheit der Bev{\"o}lkerung hervor. Dazu kommt noch ein immer h{\"a}ufigeres und intensiveres Auftreten von Hitzewellen, wodurch das Wohlbefinden der Stadtbewohner weiter beeintr{\"a}chtigt wird. Trotz eines deutlichen Anstiegs der Zahl der UHI-bezogenen Ver{\"o}ffentlichungen in den letzten Jahrzehnten haben die unterschiedlichen Definitionen von st{\"a}dtischen und l{\"a}ndlichen Gebieten in bisherigen Studien die allgemeine Vergleichbarkeit der Resultate stark erschwert. Dar{\"u}ber hinaus haben nur wenige Studien den UHI-Effekt und seine Einflussfaktoren anhand einer Kombination der Landnutzungsdaten und der thermischen Fernerkundung systematisch untersucht. Diese Arbeit stellt einen allgemeinen Rahmen zur Quantifizierung von UHI-Intensit{\"a}ten mittels eines automatisierten Algorithmus vor, wobei St{\"a}dte als Agglomerationen maximal r{\"a}umlicher Kontinuit{\"a}t basierend auf Landnutzungsdaten identifiziert, sowie deren l{\"a}ndliche Umfelder analog definiert werden. Durch Verkn{\"u}pfung der Landnutzungsdaten mit Landoberfl{\"a}chentemperaturen von Satelliten kann die UHI-Intensit{\"a}t robust und konsistent berechnet werden. Anhand dieser Innovation wurde nicht nur der Zusammenhang zwischen Stadtgr{\"o}ße und UHI-Intensit{\"a}t erneut untersucht, sondern auch die Auswirkungen der Stadtform auf die UHI-Intensit{\"a}t quantifiziert. Diese Arbeit leistet vielf{\"a}ltige Beitr{\"a}ge zum tieferen Verst{\"a}ndnis des UHI-Ph{\"a}nomens. Erstens wurde eine log-lineare Beziehung zwischen UHI-Intensit{\"a}t und Stadtgr{\"o}ße unter Ber{\"u}cksichtigung der 5,000 europ{\"a}ischen St{\"a}dte best{\"a}tigt. Werden kleinere St{\"a}dte auch ber{\"u}cksichtigt, ergibt sich eine log-logistische Beziehung. Zweitens besteht ein komplexes Zusammenspiel zwischen der Stadtform und der UHI-Intensit{\"a}t: die Stadtgr{\"o}ße stellt den st{\"a}rksten Einfluss auf die UHI-Intensit{\"a}t dar, gefolgt von der fraktalen Dimension und der Anisometrie. Allerdings zeigen ihre relativen Beitr{\"a}ge zur UHI-Intensit{\"a}t eine regionale Heterogenit{\"a}t, welche die Bedeutung r{\"a}umlicher Muster w{\"a}hrend der Umsetzung von UHI-Anpassungsmaßnahmen hervorhebt. Des Weiteren ergibt sich eine neue Saisonalit{\"a}t der UHI-Intensit{\"a}t f{\"u}r individuelle St{\"a}dte in Form von Hysteresekurven, die eine Phasenverschiebung zwischen den Zeitreihen der UHI-Intensit{\"a}t und der Hintergrundtemperatur andeutet. Diese Saisonalit{\"a}t wurde anhand von Luft- und Landoberfl{\"a}chentemperaturen untersucht, indem die Satellitenbeobachtung und die Modellierung der urbanen Grenzschicht mittels des UrbClim-Modells kombiniert wurden. Am Beispiel von London ist die Diskrepanz der Saisonalit{\"a}ten zwischen den beiden Temperaturen vor allem auf die mit der einfallenden Sonnenstrahlung verbundene Besonderheit der Landoberfl{\"a}chentemperatur zur{\"u}ckzuf{\"u}hren. Dar{\"u}ber hinaus spielt das regionale Klima eine wichtige Rolle bei der Entwicklung der UHI. Diese Arbeit ist eine der ersten Studien dieser Art, die eine systematische und statistische Untersuchung des UHI-Effektes erm{\"o}glicht. Die Ergebnisse sind von besonderer Bedeutung f{\"u}r die allgemeine r{\"a}umliche Planung und Regulierung auf Meso- und Makroebenen, damit sich Vorteile der rapiden Urbanisierung nutzbar machen und zeitgleich die folgende Hitzebelastung proaktiv vermindern lassen.}, language = {en} } @phdthesis{Kellermann2017, author = {Kellermann, Patric}, title = {Assessing natural risks for railway infrastructure and transportation in Austria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103877}, school = {Universit{\"a}t Potsdam}, pages = {x, 113}, year = {2017}, abstract = {Natural hazards can have serious societal and economic impacts. Worldwide, around one third of economic losses due to natural hazards are attributable to floods. The majority of natural hazards are triggered by weather-related extremes such as heavy precipitation, rapid snow melt, or extreme temperatures. Some of them, and in particular floods, are expected to further increase in terms of frequency and/or intensity in the coming decades due to the impacts of climate change. In this context, the European Alps areas are constantly disclosed as being particularly sensitive. In order to enhance the resilience of societies to natural hazards, risk assessments are substantial as they can deliver comprehensive risk information to be used as a basis for effective and sustainable decision-making in natural hazards management. So far, current assessment approaches mostly focus on single societal or economic sectors - e.g. flood damage models largely concentrate on private-sector housing - and other important sectors, such as the transport infrastructure sector, are widely neglected. However, transport infrastructure considerably contributes to economic and societal welfare, e.g. by ensuring mobility of people and goods. In Austria, for example, the national railway network is essential for the European transit of passengers and freights as well as for the development of the complex Alpine topography. Moreover, a number of recent experiences show that railway infrastructure and transportation is highly vulnerable to natural hazards. As a consequence, the Austrian Federal Railways had to cope with economic losses on the scale of several million euros as a result of flooding and other alpine hazards. The motivation of this thesis is to contribute to filling the gap of knowledge about damage to railway infrastructure caused by natural hazards by providing new risk information for actors and stakeholders involved in the risk management of railway transportation. Hence, in order to support the decision-making towards a more effective and sustainable risk management, the following two shortcomings in natural risks research are approached: i) the lack of dedicated models to estimate flood damage to railway infrastructure, and ii) the scarcity of insights into possible climate change impacts on the frequency of extreme weather events with focus on future implications for railway transportation in Austria. With regard to flood impacts to railway infrastructure, the empirically derived damage model Railway Infrastructure Loss (RAIL) proved expedient to reliably estimate both structural flood damage at exposed track sections of the Northern Railway and resulting repair cost. The results show that the RAIL model is capable of identifying flood risk hot spots along the railway network and, thus, facilitates the targeted planning and implementation of (technical) risk reduction measures. However, the findings of this study also show that the development and validation of flood damage models for railway infrastructure is generally constrained by the continuing lack of detailed event and damage data. In order to provide flood risk information on the large scale to support strategic flood risk management, the RAIL model was applied for the Austrian Mur River catchment using three different hydraulic scenarios as input as well as considering an increased risk aversion of the railway operator. Results indicate that the model is able to deliver comprehensive risk information also on the catchment level. It is furthermore demonstrated that the aspect of risk aversion can have marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies. Looking at the results of the investigation on future frequencies of extreme weather events jeopardizing railway infrastructure and transportation in Austria, it appears that an increase in intense rainfall events and heat waves has to be expected, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of extremes are rather sensitive to changes of the underlying thresholds. It thus emphasizes the importance to carefully define, validate, and — if needed — to adapt the thresholds that are used to detect and forecast meteorological extremes. For this, continuous and standardized documentation of damaging events and near-misses is a prerequisite. Overall, the findings of the research presented in this thesis agree on the necessity to improve event and damage documentation procedures in order to enable the acquisition of comprehensive and reliable risk information via risk assessments and, thus, support strategic natural hazards management of railway infrastructure and transportation.}, language = {en} } @phdthesis{Gudipudi2017, author = {Gudipudi, Venkata Ramana}, title = {Cities and global sustainability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407113}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 101}, year = {2017}, abstract = {In the wake of 21st century, humanity witnessed a phenomenal raise of urban agglomerations as powerhouses for innovation and socioeconomic growth. Driving much of national (and in few instances even global) economy, such a gargantuan raise of cities is also accompanied by subsequent increase in energy, resource consumption and waste generation. Much of anthropogenic transformation of Earth's environment in terms of environmental pollution at local level to planetary scale in the form of climate change is currently taking place in cities. Projected to be crucibles for entire humanity by the end of this century, the ultimate fate of humanity predominantly lies in the hands of technological innovation, urbanites' attitudes towards energy/resource consumption and development pathways undertaken by current and future cities. Considering the unparalleled energy, resource consumption and emissions currently attributed to global cities, this thesis addresses these issues from an efficiency point of view. More specifically, this thesis addresses the influence of population size, density, economic geography and technology in improving urban greenhouse gas (GHG) emission efficiency and identifies the factors leading to improved eco-efficiency in cities. In order to investigate the in uence of these factors in improving emission and resource efficiency in cities, a multitude of freely available datasets were coupled with some novel methodologies and analytical approaches in this thesis. Merging the well-established Kaya Identity to the recently developed urban scaling laws, an Urban Kaya Relation is developed to identify whether large cities are more emission efficient and the intrinsic factors leading to such (in)efficiency. Applying Urban Kaya Relation to a global dataset of 61 cities in 12 countries, this thesis identifed that large cities in developed regions of the world will bring emission efficiency gains because of the better technologies implemented in these cities to produce and utilize energy consumption while the opposite is the case for cities in developing regions. Large cities in developing countries are less efficient mainly because of their affluence and lack of efficient technologies. Apart from the in uence of population size on emission efficiency, this thesis identified the crucial role played by population density in improving building and on-road transport sector related emission efficiency in cities. This is achieved by applying the City Clustering Algorithm (CCA) on two different gridded land use datasets and a standard emission inventory to attribute these sectoral emissions to all inhabited settlements in the USA. Results show that doubling the population density would entail a reduction in the total CO2 emissions in buildings and on-road sectors typically by at least 42 \%. Irrespective of their population size and density, cities are often blamed for their intensive resource consumption that threatens not only local but also global sustainability. This thesis merged the concept of urban metabolism with benchmarking and identified cities which are eco-efficient. These cities enable better socioeconomic conditions while being less burden to the environment. Three environmental burden indicators (annual average NO2 concentration, per capita waste generation and water consumption) and two socioeconomic indicators (GDP per capita and employment ratio) for 88 most populous European cities are considered in this study. Using two different non-parametric ranking methods namely regression residual ranking and Data Envelopment Analysis (DEA), eco-efficient cities and their determining factors are identified. This in-depth analysis revealed that mature cities with well-established economic structures such as Munich, Stockholm and Oslo are eco-efficient. Further, correlations between objective eco-efficiency ranking with each of the indicator rankings and the ranking of urbanites' subjective perception about quality of life are analyzed. This analysis revealed that urbanites' perception about quality of life is not merely confined to the socioeconomic well-being but rather to their combination with lower environmental burden. In summary, the findings of this dissertation has three general conclusions for improving emission and ecological efficiency in cities. Firstly, large cities in emerging nations face a huge challenge with respect to improving their emission efficiency. The task in front of these cities is threefold: (1) deploying efficient technologies for the generation of electricity and improvement of public transportation to unlock their leap frogging potential, (2) addressing the issue of energy poverty and (3) ensuring that these cities do not develop similar energy consumption patterns with infrastructure lock-in behavior similar to those of cities in developed regions. Secondly, the on-going urban sprawl as a global phenomenon will decrease the emission efficiency within the building and transportation sector. Therefore, local policy makers should identify adequate fiscal and land use policies to curb urban sprawl. Lastly, since mature cities with well-established economic structures are more eco-efficient and urbanites' perception re ects its combination with decreasing environmental burden; there is a need to adopt and implement strategies which enable socioeconomic growth in cities whilst decreasing their environment burden.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Katja}, title = {Assessing, testing, and implementing socio-cultural valuation methods to operationalise ecosystem services in land use management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411049}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2017}, abstract = {Ecosystem services (ESs) are defined as the contributions that ecosystems make to human wellbeing and are increasingly being used as an approach to explore the importance of ecosystems for humans through their valuation. Although value plurality has been recognised long before the mainstreaming of ESs research, socio-cultural valuation is still underrepresented in ESs assessments. It is the central goal of this PhD dissertation to explore the ability of socio-cultural valuation methods for the operationalisation of ESs research in land management. To address this, I formulated three research objectives that are briefly outlined below and relate to the three studies conducted during this dissertation. The first objective relates to the assessment of the current role of socio-cultural valuation in ESs research. Human values are central to ESs research yet non-monetary socio-cultural valuation methods have been found underrepresented in the field of ESs science. In regard to the unbalanced consideration of value domains and conceptual uncertainties, I perform a systematic literature review aiming to answer the research question: To what extent have socio-cultural values been addressed in ESs assessments. The second objective aims to test socio-cultural valuation methods of ESs and their relevance for land use preferences by exploring their methodological opportunities and limitations. Socio-cultural valuation methods have only recently become a focus in ESs research and therefore bear various uncertainties in regard to their methodological implications. To overcome these uncertainties, I analysed responses to a visitor survey. The research questions related to the second objective were: What are the implications of different valuation methods for ESs values? To what extent are land use preferences explained by socio-cultural values of ESs? The third objective addressed in this dissertation is the implementation of ESs research into land management through socio-cultural valuation. Though it is emphasised that the ESs approach can assist decision making, there is little empirical evidence of the effect of ESs knowledge on land management. I proposed a way to implement transdisciplinary, spatially explicit research on ESs by answering the following research questions: Which landscape features underpinning ESs supply are considered in land management? How can participatory approaches accounting for ESs be operationalised in land management? The empirical research resulted in five main findings that provide answers to the research questions. First, this dissertation provides evidence that socio-cultural values are an integral part of ESs research. I found that they can be assessed for provisioning, regulating, and cultural services though they are linked to cultural services to a greater degree. Socio-cultural values have been assessed by monetary and non-monetary methods and their assessment is effectively facilitated by stakeholder participation. Second, I found that different methods of socio-cultural valuation revealed different information. Whereas rating revealed a general value of ESs, weighting was found more suitable to identify priorities across ESs. Value intentions likewise differed in the distribution of values, generally implying a higher value for others than for respondents themselves. Third, I showed that ESs values were distributed similarly across groups with differing land use preferences. Thus, I provided empirical evidence that ESs values and landscape values should not be used interchangeably. Fourth, I showed which landscape features important for ESs supply in a Scottish regional park are not sufficiently accounted for in the current management strategy. This knowledge is useful for the identification of priority sites for land management. Finally, I provide an approach to explore how ESs knowledge elicited by participatory mapping can be operationalised in land management. I demonstrate how stakeholder knowledge and values can be used for the identification of ESs hotspots and how these hotspots can be compared to current management priorities. This dissertation helps to bridge current gaps of ESs science by advancing the understanding of the current role of socio-cultural values in ESs research, testing different methods and their relevance for land use preferences, and implementing ESs knowledge into land management. If and to what extent ESs and their values are implemented into ecosystem management is mainly the choice of the management. An advanced understanding of socio-cultural valuation methods contributes to the normative basis of this management, while the proposal for the implementation of ESs in land management presents a practical approach of how to transfer this type of knowledge into practice. The proposed methods for socio-cultural valuation can support guiding land management towards a balanced consideration of ESs and conservation goals.}, language = {en} } @phdthesis{Carus2017, author = {Carus, Jana}, title = {Plant-habitat interactions in brackish marshes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404966}, school = {Universit{\"a}t Potsdam}, pages = {VII, 103}, year = {2017}, abstract = {Estuarine marshes are ecosystems that are situated at the transition zone between land and water and are thus controlled by physical and biological interactions. Marsh vegetation offers important ecosystem services by filtrating solid and dissolved substances from the water and providing habitat. By buffering a large part of the arriving flow velocity, attenuating wave energy and serving as erosion control for riverbanks, tidal marshes furthermore reduce the destructive effects of storm surges and storm waves and thus contribute to ecosystem-based shore protection. However, in many estuaries, extensive embankments, artificial bank protection, river dredging and agriculture threaten tidal marshes. Global warming might entail additional risks, such as changes in water levels, an increase of the tidal amplitude and a resulting shift of the salinity zones. This can affect the dynamics of the shore and foreland vegetation, and vegetation belts can be narrowed or fragmented. Against this background, it is crucial to gain a better understanding of the processes underlying the spatio temporal vegetation dynamics in brackish marshes. Furthermore, a better understanding of how plant-habitat relationships generate patterns in tidal marsh vegetation is vital to maintain ecosystem functions and assess the response of marshes to environmental change as well as the success of engineering and restoration projects. For this purpose, three research objectives were addressed within this thesis: (1) to explore the possibility of vegetation serving as self-adaptive shore protection by quantifying the reduction of current velocity in the vegetation belt and the morphologic plasticity of a brackish marsh pioneer, (2) to disentangle the roles of abiotic factors and interspecific competition on species distribution and stand characteristics in brackish marshes, and (3) to develop a mechanistic vegetation model that helps analysing the influence of habitat conditions on the spatio-temporal dynamic of tidal marsh vegetation. These aspects were investigated using a combination of field studies and statistical as well as process-based modelling. To explore the possibility of vegetation serving as self-adaptive coastal protection, in the first study, we measured current velocity with and without living vegetation, recorded ramet density and plant thickness during two growing periods at two locations in the Elbe estuary and assessed the adaptive value of a larger stem diameter of plants at locations with higher mechanical stress by biomechanical measurements. The results of this study show that under non-storm conditions, the vegetation belt of the marsh pioneer Bolboschoenus maritimus is able to buffer a large proportion of the flow velocity. We were furthermore able to show that morphological traits of plant species are adapted to hydrodynamic forces by demonstrating a positive correlation between ramet thickness and cross-shore current. In addition, our measurements revealed that thicker ramets growing at the front of the vegetation belt have a significantly higher stability than ramets inside the vegetation belt. This self-adaptive effect improves the ability of B. maritimus to grow and persist in the pioneer zone and could provide an adaptive value in habitats with high mechanical stress. In the second study, we assessed the distribution of the two marsh species and a set of stand characteristics, namely aboveground and belowground biomass, ramet density, ramet height and the percentage of flowering ramets. Furthermore, we collected information on several abiotic habitat factors to test their effect on plant growth and zonation with generalised linear models (GLMs). Our results demonstrate that flow velocity is the main factor controlling the distribution of Bolboschoenus maritimus and Phragmites australis. Additionally, inundation height and duration, as well as intraspecific competition affect distribution patterns. This study furthermore shows that cross-shore flow velocity does not only directly influence the distribution of the two marsh species, but also alters the plants' occurrence relative to inun-dation height and duration. This suggests an effect of cross-shore flow velocity on their tolerance to inundation. The analysis of the measured stand characteristics revealed a negative effect of total flow velocity on all measured parameters of B. maritimus and thus confirmed our expectation that flow velocity is a decisive stressor which influences the growth of this species. To gain a better understanding of the processes and habitat factors influencing the spatio-temporal vegetation dynamics in brackish marshes, I built a spatially explicit, mechanistic model applying a pattern-oriented modelling approach. A sensitivity analysis of the para-meters of this dynamic habitat-macrophyte model HaMac suggests that rhizome growth is the key process for the lateral dynamics of brackish marshes. From the analysed habitat factors, P. australis patterns were mainly influenced by flow velocity. The competition with P. australis was of key importance for the belowground biomass of B. maritimus. Concerning vegetation dynamics, the model results emphasise that without the effect of flow velocity the B. maritimus vegetation belt would expand into the tidal flat at locations with present vegetation recession, suggesting that flow velocity is the main reason for vegetation recession at exposed locations. Overall, the results of this thesis demonstrate that brackish marsh vegetation considerably contributes to flow reduction under average flow conditions and can hence be a valuable component of shore-protection schemes. At the same time, the distribution, growth and expansion of tidal marsh vegetation is substantially influenced by flow. Altogether, this thesis provides a clear step forward in understanding plant-habitat interactions in tidal marshes. Future research should integrate studies of vertical marsh accretion with research on the factors that control the lateral position of marshes.}, language = {en} } @phdthesis{Schmidt2017, author = {Schmidt, Silke Regina}, title = {Analyzing lakes in the time frequency domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406955}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 126}, year = {2017}, abstract = {The central aim of this thesis is to demonstrate the benefits of innovative frequency-based methods to better explain the variability observed in lake ecosystems. Freshwater ecosystems may be the most threatened part of the hydrosphere. Lake ecosystems are particularly sensitive to changes in climate and land use because they integrate disturbances across their entire catchment. This makes understanding the dynamics of lake ecosystems an intriguing and important research priority. This thesis adds new findings to the baseline knowledge regarding variability in lake ecosystems. It provides a literature-based, data-driven and methodological framework for the investigation of variability and patterns in environmental parameters in the time frequency domain. Observational data often show considerable variability in the environmental parameters of lake ecosystems. This variability is mostly driven by a plethora of periodic and stochastic processes inside and outside the ecosystems. These run in parallel and may operate at vastly different time scales, ranging from seconds to decades. In measured data, all of these signals are superimposed, and dominant processes may obscure the signals of other processes, particularly when analyzing mean values over long time scales. Dominant signals are often caused by phenomena at long time scales like seasonal cycles, and most of these are well understood in the limnological literature. The variability injected by biological, chemical and physical processes operating at smaller time scales is less well understood. However, variability affects the state and health of lake ecosystems at all time scales. Besides measuring time series at sufficiently high temporal resolution, the investigation of the full spectrum of variability requires innovative methods of analysis. Analyzing observational data in the time frequency domain allows to identify variability at different time scales and facilitates their attribution to specific processes. The merit of this approach is subsequently demonstrated in three case studies. The first study uses a conceptual analysis to demonstrate the importance of time scales for the detection of ecosystem responses to climate change. These responses often occur during critical time windows in the year, may exhibit a time lag and can be driven by the exceedance of thresholds in their drivers. This can only be detected if the temporal resolution of the data is high enough. The second study applies Fast Fourier Transform spectral analysis to two decades of daily water temperature measurements to show how temporal and spatial scales of water temperature variability can serve as an indicator for mixing in a shallow, polymictic lake. The final study uses wavelet coherence as a diagnostic tool for limnology on a multivariate high-frequency data set recorded between the onset of ice cover and a cyanobacteria summer bloom in the year 2009 in a polymictic lake. Synchronicities among limnological and meteorological time series in narrow frequency bands were used to identify and disentangle prevailing limnological processes. Beyond the novel empirical findings reported in the three case studies, this thesis aims to more generally be of interest to researchers dealing with now increasingly available time series data at high temporal resolution. A set of innovative methods to attribute patterns to processes, their drivers and constraints is provided to help make more efficient use of this kind of data.}, language = {en} } @phdthesis{Siddiqui2017, author = {Siddiqui, Tarique Adnan}, title = {Long-term investigation of the lunar tide in the equatorial electrojet during stratospheric sudden warmings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406384}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 116}, year = {2017}, abstract = {The ionosphere, which is strongly influenced by the Sun, is known to be also affected by meteorological processes. These processes, despite having their origin in the troposphere and stratosphere, interact with the upper atmosphere. Such an interaction between atmospheric layers is known as vertical coupling. During geomagnetically quiet times, when near-Earth space is not under the influence of solar storms, these processes become important drivers for ionospheric variability. Studying the link between these processes in the lower atmosphere and the ionospheric variability is important for our understanding of fundamental mechanisms in ionospheric and meteorological research. A prominent example of vertical coupling between the stratosphere and the ionosphere are the so-called stratospheric sudden warming (SSW) events that occur usually during northern winters and result in an increase in the polar stratospheric temperature and a reversal of the circumpolar winds. While the phenomenon of SSW is confined to the northern polar stratosphere, its influence on the ionosphere can be observed even at equatorial latitudes. During SSW events, the connection between the polar stratosphere and the equatorial ionosphere is believed to be through the modulation of global atmospheric tides. These tides are fundamental for the ionospheric E-region wind dynamo that generates electric fields and currents in the ionosphere. Observations of ionospheric currents indicate a large enhancement of the semidiurnal lunar tide in response to SSW events. Thus, the semidiurnal lunar tide becomes an important driver of ionospheric variability during SSW events. In this thesis, the ionospheric effect of SSW events is investigated in the equatorial region, where a narrow but an intense E-region current known as the equatorial electrojet (EEJ) flows above the dip equator during the daytime. The day-to-day variability of the EEJ can be determined from magnetic field records at geomagnetic observatories close to the dip equator. Such magnetic data are available for several decades and allows to investigate the impact of SSW events on the EEJ and, even more importantly, helps in understanding the effects of SSW events on the equatorial ionosphere. An excellent long-term record of the geomagnetic field at the equator from 1922 onwards is available for the observatory Huancayo in Peru and is extensively utilized in this study. The central subject of this thesis is the investigation of lunar tides in the EEJ during SSW events by analyzing long time series. This is done by estimating the lunar tidal amplitude in the EEJ from the magnetic records at Huancayo and by comparing them to measurements of the polar stratospheric wind and temperature, which led to the identification of the known SSW events from 1952 onwards. One goal of this thesis is to identify SSW events that predate 1952. To this end, superposed epoch analysis (SEA) is employed to establish a relationship between the lunar tidal power and the wind and temperature conditions in the lower atmosphere. A threshold value for the lunar tidal power is identified that is discriminative for the known SSW events. This threshold is then used to identify lunar tidal enhancements, which are indicative for any historic SSW events prior to 1952. It can be shown, that the number of lunar tidal enhancements and thus the occurrence frequency of historic SSW events between 1926 and 1952 is similar to the occurrence frequency of the known SSW events from 1952 onwards. Next to the classic SSW definition, the concept of polar vortex weakening (PVW) is utilized in this thesis. PVW is defined for higher latitudes and altitudes (≈ 40km) than the classical SSW definition (≈ 32km). The correlation between the timing and magnitude of lunar tidal enhancements in the EEJ and the timing and magnitude of PVW is found to be better than for the classic SSW definition. This suggests that the lunar tidal enhancements in the EEJ are closely linked to the state of the middle atmosphere. Geomagnetic observatories located in different longitudes at the dip equator allow investigating the longitudinally dependent variability of the EEJ during SSW events. For this purpose, the lunar tidal enhancements in the EEJ are determined for the Peruvian and Indian sectors during the major SSW events of the years 2006 and 2009. It is found that the lunar tidal amplitude shows similar enhancements in the Peruvian sector during both SSW events, while the enhancements are notably different for the two events in the Indian sector. In summary, this thesis shows that lunar tidal enhancements in the EEJ are indeed correlated to the occurrence of SSW events and they should be considered a prominent driver of low latitude ionospheric variability. Secondly, lunar tidal enhancements are found to be longitudinally variable. This suggests that regional effects, such as ionospheric conductivity and the geometry and strength of the geomagnetic field, also play an important role and have to be considered when investigating the mechanisms behind vertical coupling.}, language = {en} } @phdthesis{Herbrich2017, author = {Herbrich, Marcus}, title = {Einfluss der erosionsbedingten Pedogenese auf den Wasserund Stoffhaushalt ackerbaulich genutzter B{\"o}den der Grundmor{\"a}nenbodenlandschaft NO-Deutschlands - hydropedologische Untersuchungen mittels w{\"a}gbarer Pr{\"a}zisionslysimeter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408561}, school = {Universit{\"a}t Potsdam}, pages = {186}, year = {2017}, abstract = {In the arable soil landscape of hummocky ground moraines, an erosion-affected spatial differentiation of soils can be observed. Man-made erosion leads to soil profile modifications along slopes with changed solum thickness and modified properties of soil horizons due to water erosion in combination with tillage operations. Soil erosion creates, thereby, spatial patterns of soil properties (e.g., texture and organic matter content) and differences in crop development. However, little is known about the manner in which water fluxes are affected by soil-crop interactions depending on contrasting properties of differently-developed soil horizons and how water fluxes influence the carbon transport in an eroded landscape. To identify such feedbacks between erosion-induced soil profile modifications and the 1D-water and solute balance, high-precision weighing lysimeters equipped with a wide range of sensor technique were filled with undisturbed soil monoliths that differed in the degree of past soil erosion. Furthermore, lysimeter effluent concentrations were analyzed for dissolved carbon fractions in bi-weekly intervals. The water balance components measured by high precision lysimeters varied from the most eroded to the less eroded monolith up to 83 \% (deep drainage) primarily caused due to varying amounts of precipitation and evapotranspiration for a 3-years period. Here, interactions between crop development and contrasting rainfall interception by above ground biomass could explain differences in water balance components. Concentrations of dissolved carbon in soil water samples were relatively constant in time, suggesting carbon leaching was mainly affected by water fluxes in this observation period. For the lysimeter-based water balance analysis, a filtering scheme was developed considering temporal autocorrelation. The minute-based autocorrelation analysis of mass changes from lysimeter time series revealed characteristic autocorrelation lengths ranging from 23 to 76 minutes. Thereby, temporal autocorrelation provided an optimal approximation of precipitation quantities. However, the high temporal resolution in lysimeter time series is restricted by the lengths of autocorrelation. Erosion-induced but also gradual changes in soil properties were reflected by dynamics of soil water retention properties in the lysimeter soils. Short-term and long-term hysteretic water retention data suggested seasonal wettability problems of soils increasingly limited rewetting of previously dried pore regions. Differences in water retention were assigned to soil tillage operations and the erosion history at different slope positions. The threedimensional spatial pattern of soil types that result from erosional soil profile modifications were also reflected in differences of crop root development at different landscape positions. Contrasting root densities revealed positive relations of root and aboveground plant characteristics. Differences in the spatially-distributed root growth between different eroded soil types provided indications that root development was affected by the erosion-induced soil evolution processes. Overall, the current thesis corroborated the hypothesis that erosion-induced soil profile modifications affect the soil water balance, carbon leaching and soil hydraulic properties, but also the crop root system is influenced by erosion-induced spatial patterns of soil properties in the arable hummocky post glacial soil landscape. The results will help to improve model predictions of water and solute movement in arable soils and to understand interactions between soil erosion and carbon pathways regarding sink-or-source terms in landscapes.}, language = {en} } @phdthesis{Wambura2017, author = {Wambura, Frank Joseph}, title = {Analysis of anthropogenic impacts on water resources in the Wami River basin, Tanzania}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, language = {en} } @phdthesis{Golly2017, author = {Golly, Antonius}, title = {Formation and evolution of channel steps and their role for sediment dynamics in a steep mountain stream}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411728}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2017}, abstract = {Steep mountain channels are an important component of the fluvial system. On geological timescales, they shape mountain belts and counteract tectonic uplift by erosion. Their channels are strongly coupled to hillslopes and they are often the main source of sediment transported downstream to low-gradient rivers and to alluvial fans, where commonly settlements in mountainous areas are located. Hence, mountain streams are the cause for one of the main natural hazards in these regions. Due to climate change and a pronounced populating of mountainous regions the attention given to this threat is even growing. Although quantitative studies on sediment transport have significantly advanced our knowledge on measuring and calibration techniques we still lack studies of the processes within mountain catchments. Studies examining the mechanisms of energy and mass exchange on small temporal and spatial scales in steep streams remain sparse in comparison to low-gradient alluvial channels. In the beginning of this doctoral project, a vast amount of experience and knowledge of a steep stream in the Swiss Prealps had to be consolidated in order to shape the principal aim of this research effort. It became obvious, that observations from within the catchment are underrepresented in comparison to experiments performed at the catchment's outlet measuring fluxes and the effects of the transported material. To counteract this imbalance, an examination of mass fluxes within the catchment on the process scale was intended. Hence, this thesis is heavily based on direct field observations, which are generally rare in these environments in quantity and quality. The first objective was to investigate the coupling of the channel with surrounding hillslopes, the major sources of sediment. This research, which involved the monitoring of the channel and adjacent hillslopes, revealed that alluvial channel steps play a key role in coupling of channel and hillslopes. The observations showed that hillslope stability is strongly associated with the step presence and an understanding of step morphology and stability is therefore crucial in understanding sediment mobilization. This finding refined the way we think about the sediment dynamics in steep channels and motivated continued research of the step dynamics. However, soon it became obvious that the technological basis for developing field tests and analyzing the high resolution geometry measured in the field was not available. Moreover, for many geometrical quantities in mountain channels definitions and a clear scientific standard was not available. For example, these streams are characterized by a high spatial variability of the channel banks, preventing straightforward calculations of the channel width without a defined reference. Thus, the second and inevitable part of this thesis became the development and evaluation of scientific tools in order to investigate the geometrical content of the study reach thoroughly. The developed framework allowed the derivation of various metrics of step and channel geometry which facilitated research on the a large data set of observations of channel steps. In the third part, innovative, physically-based metrics have been developed and compared to current knowledge on step formation, suggested in the literature. With this analyses it could be demonstrated that the formation of channel steps follow a wide range of hydraulic controls. Due to the wide range of tested parameters channel steps observed in a natural stream were attributed to different mechanisms of step formation, including those based on jamming and those based on key-stones. This study extended our knowledge on step formation in a steep stream and harmonized different, often time seen as competing, processes of step formation. This study was based on observations collected at one point in time. In the fourth part of this project, the findings of the snap-shot observations were extended in the temporal dimension and the derived concepts have been utilized to investigate reach-scale step patterns in response to large, exceptional flood events. The preliminary results of this work based on the long-term analyses of 7 years of long profile surveys showed that the previously observed channel-hillslope mechanism is the responsible for the short-term response of step formation. The findings of the long-term analyses of step patterns drew a bow to the initial observations of a channel-hillslope system which allowed to join the dots in the dynamics of steep stream. Thus, in this thesis a broad approach has been chosen to gain insights into the complex system of steep mountain rivers. The effort includes in situ field observations (article I), the development of quantitative scientific tools (article II), the reach-scale analyses of step-pool morphology (article III) and its temporal evolution (article IV). With this work our view on the processes within the catchment has been advanced towards a better mechanistic understanding of these fluvial system relevant to improve applied scientific work.}, language = {en} } @phdthesis{Theuring2017, author = {Theuring, Philipp Christian}, title = {Suspended sediments in the Kharaa River, sources and impacts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410550}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2017}, abstract = {Anthropogenically amplified erosion leads to increased fine-grained sediment input into the fluvial system in the 15.000 km2 Kharaa River catchment in northern Mongolia and constitutes a major stressing factor for the aquatic ecosystem. This study uniquely combines the application of intensive monitoring, source fingerprinting and catchment modelling techniques to allow for the comparison of the credibility and accuracy of each single method. High-resolution discharge data were used in combination with daily suspended solid measurements to calculate the suspended sediment budget and compare it with estimations of the sediment budget model SedNet. The comparison of both techniques showed that the development of an overall sediment budget with SedNet was possible, yielding results in the same order of magnitude (20.3 kt a- 1 and 16.2 kt a- 1). Radionuclide sediment tracing, using Be-7, Cs-137 and Pb-210 was applied to differentiate sediment sources for particles < 10μm from hillslope and riverbank erosion and showed that riverbank erosion generates 74.5\% of the suspended sediment load, whereas surface erosion contributes 21.7\% and gully erosion only 3.8\%. The contribution of the single subcatchments of the Kharaa to the suspended sediment load was assessed based on their variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb). These variations were used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The contributions of the individual sub-catchment varied from 6.4\% to 36.2\%, generally showing higher contributions from the sub-catchments in the middle, rather than the upstream portions of the study area. The results indicate that river bank erosion generated by existing grazing practices of livestock is the main cause for elevated fine sediment input. Actions towards the protection of the headwaters and the stabilization of the river banks within the middle reaches were identified as the highest priority. Deforestation and by lodging and forest fires should be prevented to avoid increased hillslope erosion in the mountainous areas. Mining activities are of minor importance for the overall catchment sediment load but can constitute locally important point sources for particular heavy metals in the fluvial system.}, language = {en} } @phdthesis{Murawski2017, author = {Murawski, Aline}, title = {Trends in precipitation over Germany and the Rhine basin related to changes in weather patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412725}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2017}, abstract = {Niederschlag als eine der wichtigsten meteorologischen Gr{\"o}ßen f{\"u}r Landwirtschaft, Wasserversorgung und menschliches Wohlbefinden hat schon immer erh{\"o}hte Aufmerksamkeit erfahren. Niederschlagsmangel kann verheerende Auswirkungen haben, wie z.B. Missernten und Wasserknappheit. {\"U}berm{\"a}ßige Niederschl{\"a}ge andererseits bergen jedoch ebenfalls Gefahren in Form von Hochwasser oder Sturzfluten und wiederum Missernten. Daher wurde viel Arbeit in die Detektion von Niederschlags{\"a}nderungen und deren zugrundeliegende Prozesse gesteckt. Insbesondere angesichts von Klimawandel und unter Ber{\"u}cksichtigung des Zusammenhangs zwischen Temperatur und atmosph{\"a}rischer Wasserhaltekapazit{\"a}t, ist großer Bedarf an Forschung zum Verst{\"a}ndnis der Auswirkungen von Klimawandel auf Niederschlags{\"a}nderungen gegeben. Die vorliegende Arbeit hat das Ziel, vergangene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Variablen zu verstehen. F{\"u}r verschiedene Zeitr{\"a}ume wurden Tendenzen gefunden und mit entsprechenden Ver{\"a}nderungen in der großskaligen atmosph{\"a}rischen Zirkulation in Zusammenhang gebracht. Die Ergebnisse dieser Arbeit k{\"o}nnen als Grundlage f{\"u}r die Attributierung von Hochwasserver{\"a}nderungen zu Klimawandel genutzt werden. Die Annahmen f{\"u}r die Maßstabsverkleinerung („Downscaling") der Daten von großskaligen Zirkulationsmodellen auf die lokale Skala wurden hier getestet und verifziert. In einem ersten Schritt wurden Niederschlagsver{\"a}nderungen in Deutschland analysiert. Dabei lag der Fokus nicht nur auf Niederschlagssummen, sondern auch auf Eigenschaften der statistischen Verteilung, {\"U}bergangswahrscheinlichkeiten als Maß f{\"u}r Trocken- und Niederschlagsperioden und Extremniederschlagsereignissen. Den r{\"a}umlichen Fokus auf das Rheineinzugsgebiet, das gr{\"o}ßte Flusseinzugsgebiet Deutschlands und einer der Hauptwasserwege Europas, verlagernd, wurden nachgewiesene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Gr{\"o}ßen in Bezug zu einer „optimierten" Wetterlagenklassifikation analysiert. Die Wetterlagenklassifikation wurde unter der Maßgabe entwickelt, die Varianz des lokalen Klimas bestm{\"o}glich zu erkl{\"a}ren. Die letzte hier behandelte Frage dreht sich darum, ob die beobachteten Ver{\"a}nderungen im lokalen Klima eher H{\"a}ufigkeits{\"a}nderungen der Wetterlagen zuzuordnen sind oder einer Ver{\"a}nderung der Wetterlagen selbst. Eine gebr{\"a}uchliche Annahme f{\"u}r einen Downscaling-Ansatz mit Hilfe von Wetterlagen und einem stochastischen Wettergenerator ist, dass Klimawandel sich allein durch eine Ver{\"a}nderung der H{\"a}ufigkeit von Wetterlagen ausdr{\"u}ckt, die Eigenschaften der Wetterlagen dabei jedoch konstant bleiben. Diese Annahme wurde {\"u}berpr{\"u}ft und die F{\"a}higkeit der neuesten Generation von Zirkulationsmodellen, diese Wetterlagen zu reproduzieren, getestet. Niederschlagsver{\"a}nderungen in Deutschland im Zeitraum 1951-2006 lassen sich zusammenfassen als negativ im Sommer und positiv in allen anderen Jahreszeiten. Verschiedene Niederschlagscharakteristika best{\"a}tigen die Tendenz in den Niederschlagssummen: w{\"a}hrend mittlere und extreme Niederschlagstageswerte im Winter zugenommen haben, sind auch zusammenh{\"a}ngende Niederschlagsperioden l{\"a}nger geworden (ausgedr{\"u}ckt als eine gestiegene Wahrscheinlichkeit f{\"u}r einen Tag mit Niederschlag gefolgt von einem weiteren nassen Tag). Im Sommer wurde das Gegenteil beobachtet: gesunkene Niederschlagssummen, untermauert von verringerten Mittel- und Extremwerten und l{\"a}ngeren Trockenperioden. Abseits dieser allgemeinen Zusammenfassung f{\"u}r das gesamte Gebiet Deutschlands, ist die r{\"a}umliche Verteilung von Niederschlagsver{\"a}nderungen deutlich heterogener. Vermehrter Niederschlag im Winter wurde haupts{\"a}chlich im Nordwesten und S{\"u}dosten Deutschlands beobachtet, w{\"a}hrend im Fr{\"u}hling die st{\"a}rksten Ver{\"a}nderungen im Westen und im Herbst im S{\"u}den aufgetreten sind. Das saisonale Bild wiederum l{\"o}st sich f{\"u}r die zugeh{\"o}rigen Monate auf, z.B. setzt sich der Anstieg im Herbstniederschlag aus deutlich vermehrtem Niederschlag im S{\"u}dwesten im Oktober und im S{\"u}dosten im November zusammen. Diese Ergebnisse betonen die starken r{\"a}umlichen Zusammenh{\"a}nge der Niederschlags{\"a}nderungen. Der n{\"a}chste Schritt hinsichtlich einer Zuordnung von Niederschlagsver{\"a}nderungen zu {\"A}nderungen in großskaligen Zirkulationsmustern, war die Ableitung einer Wetterlagenklassifikation, die die betrachteten lokalen Klimavariablen hinreichend stratifizieren kann. Fokussierend auf Temperatur, Globalstrahlung und Luftfeuchte zus{\"a}tzlich zu Niederschlag, wurde eine Klassifikation basierend auf Luftdruck, Temperatur und spezifischer Luftfeuchtigkeit als am besten geeignet erachtet, die Varianz der lokalen Variablen zu erkl{\"a}ren. Eine vergleichsweise hohe Anzahl von 40 Wetterlagen wurde ausgew{\"a}hlt, die es erlaubt, typische Druckmuster durch die zus{\"a}tzlich verwendete Temperaturinformation einzelnen Jahreszeiten zuzuordnen. W{\"a}hrend die F{\"a}higkeit, Varianz im Niederschlag zu erkl{\"a}ren, relativ gering ist, ist diese deutlich besser f{\"u}r Globalstrahlung und nat{\"u}rlich Temperatur. Die meisten der aktuellen Zirkulationsmodelle des CMIP5-Ensembles sind in der Lage, die Wetterlagen hinsichtlich H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz hinreichend gut zu reproduzieren. Schließlich wurden dieWetterlagen bez{\"u}glich Ver{\"a}nderungen in ihrer H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz, sowie der Wetterlagen-spezifischen Niederschl{\"a}ge und Temperatur, untersucht. Um Unsicherheiten durch die Wahl eines bestimmten Analysezeitraums auszuschließen, wurden alle m{\"o}glichen Zeitr{\"a}ume mit mindestens 31 Jahren im Zeitraum 1901-2010 untersucht. Dadurch konnte die Annahme eines konstanten Zusammenhangs zwischen Wetterlagen und lokalem Wetter gr{\"u}ndlich {\"u}berpr{\"u}ft werden. Es wurde herausgefunden, dass diese Annahme nur zum Teil haltbar ist. W{\"a}hrend Ver{\"a}nderungen in der Temperatur haupts{\"a}chlich auf Ver{\"a}nderungen in der Wetterlagenh{\"a}ufigkeit zur{\"u}ckzuf{\"u}hren sind, wurde f{\"u}r Niederschlag ein erheblicher Teil von Ver{\"a}nderungen innerhalb einzelner Wetterlagen gefunden. Das Ausmaß und sogar das Vorzeichen der Ver{\"a}nderungen h{\"a}ngt hochgradig vom untersuchten Zeitraum ab. Die H{\"a}ufigkeit einiger Wetterlagen steht in direkter Beziehung zur langfristigen Variabilit{\"a}t großskaliger Zirkulationsmuster. Niederschlagsver{\"a}nderungen variieren nicht nur r{\"a}umlich, sondern auch zeitlich - Aussagen {\"u}ber Tendenzen sind nur in Bezug zum jeweils untersuchten Zeitraum g{\"u}ltig. W{\"a}hrend ein Teil der Ver{\"a}nderungen auf {\"A}nderungen der großskaligen Zirkulation zur{\"u}ckzuf{\"u}hren ist, gibt es auch deutliche Ver{\"a}nderungen innerhalb einzelner Wetterlagen. Die Ergebnisse betonen die Notwendigkeit f{\"u}r einen sorgf{\"a}ltigen Nachweis von Ver{\"a}nderungen m{\"o}glichst verschiedene Zeitr{\"a}ume zu untersuchen und mahnen zur Vorsicht bei der Anwendung von Downscaling-Ans{\"a}tzen mit Hilfe von Wetterlagen, da diese die Auswirkungen von Klimaver{\"a}nderungen durch das Vernachl{\"a}ssigen von Wetterlagen-internen Ver{\"a}nderungen falsch einsch{\"a}tzen k{\"o}nnten.}, language = {en} } @phdthesis{Wieczorek2017, author = {Wieczorek, Mareike}, title = {Stand structure patterns in the Siberian treeline under climate change}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2017}, language = {en} } @phdthesis{Kalbe2016, author = {Kalbe, Johannes}, title = {Stepping stones hominin dispersal out of Africa}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2016}, language = {en} } @phdthesis{Lenz2016, author = {Lenz, Josefine}, title = {Thermokarst dynamics in central-eastern Beringia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101364}, school = {Universit{\"a}t Potsdam}, pages = {XII, 128, A-47}, year = {2016}, abstract = {Widespread landscape changes are presently observed in the Arctic and are most likely to accelerate in the future, in particular in permafrost regions which are sensitive to climate warming. To assess current and future developments, it is crucial to understand past environmental dynamics in these landscapes. Causes and interactions of environmental variability can hardly be resolved by instrumental records covering modern time scales. However, long-term environmental variability is recorded in paleoenvironmental archives. Lake sediments are important archives that allow reconstruction of local limnogeological processes as well as past environmental changes driven directly or indirectly by climate dynamics. This study aims at reconstructing Late Quaternary permafrost and thermokarst dynamics in central-eastern Beringia, the terrestrial land mass connecting Eurasia and North America during glacial sea-level low stands. In order to investigate development, processes and influence of thermokarst dynamics, several sediment cores from extant lakes and drained lake basins were analyzed to answer the following research questions: 1. When did permafrost degradation and thermokarst lake development take place and what were enhancing and inhibiting environmental factors? 2. What are the dominant processes during thermokarst lake development and how are they reflected in proxy records? 3. How did, and still do, thermokarst dynamics contribute to the inventory and properties of organic matter in sediments and the carbon cycle? Methods applied in this study are based upon a multi-proxy approach combining sedimentological, geochemical, geochronological, and micropaleontological analyses, as well as analyses of stable isotopes and hydrochemistry of pore-water and ice. Modern field observations of water quality and basin morphometrics complete the environmental investigations. The investigated sediment cores reveal permafrost degradation and thermokarst dynamics on different time scales. The analysis of a sediment core from GG basin on the northern Seward Peninsula (Alaska) shows prevalent terrestrial accumulation of yedoma throughout the Early to Mid Wisconsin with intermediate wet conditions at around 44.5 to 41.5 ka BP. This first wetland development was terminated by the accumulation of a 1-meter-thick airfall tephra most likely originating from the South Killeak Maar eruption at 42 ka BP. A depositional hiatus between 22.5 and 0.23 ka BP may indicate thermokarst lake formation in the surrounding of the site which forms a yedoma upland till today. The thermokarst lake forming GG basin initiated 230 ± 30 cal a BP and drained in Spring 2005 AD. Four years after drainage the lake talik was still unfrozen below 268 cm depth. A permafrost core from Mama Rhonda basin on the northern Seward Peninsula preserved a full lacustrine record including several lake phases. The first lake generation developed at 11.8 cal ka BP during the Lateglacial-Early Holocene transition; its old basin (Grandma Rhonda) is still partially preserved at the southern margin of the study basin. Around 9.0 cal ka BP a shallow and more dynamic thermokarst lake developed with actively eroding shorelines and potentially intermediate shallow water or wetland phases (Mama Rhonda). Mama Rhonda lake drainage at 1.1 cal ka BP was followed by gradual accumulation of terrestrial peat and top-down refreezing of the lake talik. A significant lower organic carbon content was measured in Grandma Rhonda deposits (mean TOC of 2.5 wt\%) than in Mama Rhonda deposits (mean TOC of 7.9 wt\%) highlighting the impact of thermokarst dynamics on biogeochemical cycling in different lake generations by thawing and mobilization of organic carbon into the lake system. Proximal and distal sediment cores from Peatball Lake on the Arctic Coastal Plain of Alaska revealed young thermokarst dynamics since about 1,400 years along a depositional gradient based on reconstructions from shoreline expansion rates and absolute dating results. After its initiation as a remnant pond of a previous drained lake basin, a rapidly deepening lake with increasing oxygenation of the water column is evident from laminated sediments, and higher Fe/Ti and Fe/S ratios in the sediment. The sediment record archived characterizing shifts in depositional regimes and sediment sources from upland deposits and re-deposited sediments from drained thaw lake basins depending on the gradually changing shoreline configuration. These changes are evident from alternating organic inputs into the lake system which highlights the potential for thermokarst lakes to recycle old carbon from degrading permafrost deposits of its catchment. The lake sediment record from Herschel Island in the Yukon (Canada) covers the full Holocene period. After its initiation as a thermokarst lake at 11.7 cal ka BP and intense thermokarst activity until 10.0 cal ka BP, the steady sedimentation was interrupted by a depositional hiatus at 1.6 cal ka BP which likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines. The specific setting of the lake on a push moraine composed of marine deposits is reflected in the sedimentary record. Freshening of the maturing lake is indicated by decreasing electrical conductivity in pore-water. Alternation of marine to freshwater ostracods and foraminifera confirms decreasing salinity as well but also reflects episodical re-deposition of allochthonous marine sediments. Based on permafrost and lacustrine sediment records, this thesis shows examples of the Late Quaternary evolution of typical Arctic permafrost landscapes in central-eastern Beringia and the complex interaction of local disturbance processes, regional environmental dynamics and global climate patterns. This study confirms that thermokarst lakes are important agents of organic matter recycling in complex and continuously changing landscapes.}, language = {en} } @phdthesis{Baese2016, author = {B{\"a}se, Frank}, title = {Interception loss of changing land covers in the humid tropical lowland of Latin America}, school = {Universit{\"a}t Potsdam}, pages = {ix, 85 Seiten}, year = {2016}, abstract = {Das Gebiet der feuchten Tropen ist die am st{\"a}rksten durch den Landnutzungswandel betroffene Region der Erde. Vor allem die Rodung tropischer W{\"a}lder, um Platz f{\"u}r Rinderweiden oder den Anbau von Soja zu schaffen, aber auch seit j{\"u}ngster Zeit die Bem{\"u}hungen um Wiederaufforstungen pr{\"a}gen diesen Landnutzungswandel. Dabei beeinflusst die {\"A}nderung der Vegetationsbedeckung den regionalen Wasserhaushalt auf vielf{\"a}ltige Weise. Betroffen ist unter anderem die Verdunstung von feuchten Oberfl{\"a}chen. Die so genannte Interzeptionsverdunstung bzw. der Interzeptionsverlust tr{\"a}gt erheblich zum Wasserdampfgehalt in der unteren Atmosph{\"a}re und schließlich zur Niederschlagsbildung bei. Ziele dieser Dissertation waren (1) die experimentelle Untersuchung der Interzeptionsverlustunterschiede zwischen einem nat{\"u}rlichen, tropischen Wald und einer Sojaplantage im s{\"u}dlichen Amazonasgebiet, (2) die Modellierung des Interzeptionsverlustes dieser beiden Vegetationsformen im Vergleich zu einem jungen Sekund{\"a}rwald unter dem Aspekt der Unsicherheiten bei der Ableitung notwendiger Modellparameter sowohl im S{\"u}damazonas als auch im Einzugsgebietes des Panamakanals sowie (3) die Wasserhaushaltsanalyse eines vom Landnutzungswandel gepr{\"a}gten Teileinzugsgebietes des Panamakanals in Hinblick auf die Ver{\"a}nderung der Interzeptionsverdunstung durch sich ver{\"a}ndernde Landnutzung und der {\"A}nderung der klimatischen Bedingungen. Die Messung des Interzeptionsverlustes zeigte, dass in der Hauptwachstumsphase vom Soja von dessen Oberfl{\"a}che mehr Wasserverdunstet als von der Oberfl{\"a}che des Waldes. Allerdings ist in der Jahresbilanz der Interzeptionsverlust vom Wald h{\"o}her, da diese Studie nur eine Momentaufnahme zur Zeit der vollen Vegetationsentwicklung des Sojas mit einem Zeitfenster von zwei Monaten widerspiegelt. Durch die geringere ganzj{\"a}hrige Verdunstung von den mit Soja bestandenen Fl{\"a}chen, wird hier der Niederschlag schneller dem Abfluss zugef{\"u}hrt und schell aus der Region ausgetragen. Somit tr{\"a}gt der Landnutzungswandel von Wald zu Soja zu einer mittelfristigen Reduktion des in der Region verf{\"u}gbaren Wassers bei. Die anschließende Modellierung des Interzeptionsverlustes zeigte Einerseits einen starken Einfluss der Datenqualit{\"a}t auf die Plausibilit{\"a}t der Ergebnisse und Andererseits, dass die Sensitivit{\"a}t der einzelnen Parameter zwischen den Untersuchungsgebieten variiert. Eine Schl{\"u}sselrolle nimmt die Wasserspeicherkapazit{\"a}t der Vegetationskrone ein. Dennoch ist die Evaporationsrate die treibende Gr{\"o}ße im Interzeptionsprozess, so dass von ihr die gr{\"o}ßte Unsicherheit ausgeht. Je nach verwendeter Methode zur Ableitung dieses Parameters unterscheiden sich die gewonnenen Parameterwerte erheblich. Die Wirkungsanalyse der Interzeptionsverdunstung auf den Wasserhaushalt im Wirkungsgeflecht der {\"A}nderungen von Temperatur, Niederschlag und Landnutzung im Landschaftsmosaik eines Flusseinzugsgebiets mit Hilfe eines Wasserhaushaltsmodels zeigte den Einfluss der Landnutzungs{\"a}nderung auf die Abflussbildung mittels verschiedener Landnutzungsszenarien. Die Ergebnisse belegen, dass die Landnutzungs{\"a}nderung im Gebiet nur einen geringen Einfluss auf den Jahresabfluss hat. St{\"a}rker scheint sich der gemessene Temperaturanstieg auf die Verdunstung auszuwirken. Der mit einer h{\"o}heren Temperatur einhergehende Anstieg der Transpiration und Interzeptionsverdunstung gleicht die gemessene Zunahme des Gebietsniederschlages aus, sodass keine signifikanten {\"A}nderungen im Jahresabfluss nachgewiesen werden konnten. Die Ergebnisse der drei Studien verdeutlichen den Einfluss der Landnutzung auf die Interzeptionsverdunstung. Allerdings veranschaulichten die Resultate der Wasserhaushalts-modellierung, wie sehr dieser Einfluss durch die Ver{\"a}nderung der {\"a}ußeren Rahmenbedingungen, vor allem durch den Anstieg der Temperatur, {\"u}berpr{\"a}gt werden kann. Dies belegt, dass eine einfache {\"U}bertragung der Ergebnisse zwischen den Untersuchungsgebiet nicht m{\"o}glich ist. Somit bleibt die experimentelle Erhebung von Vegetationsparametern sowie des Interzeptionsverlustes an den jeweils zu untersuchenden Standort f{\"u}r die Anwendung von Modellen unerl{\"a}sslich.}, language = {en} } @phdthesis{Draeger2016, author = {Dr{\"a}ger, Nadine}, title = {Holocene climate and environmental variability in NE Germany inferred from annually laminated lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103037}, school = {Universit{\"a}t Potsdam}, pages = {xv, 144 Seiten}, year = {2016}, abstract = {Understanding the role of natural climate variability under the pressure of human induced changes of climate and landscapes, is crucial to improve future projections and adaption strategies. This doctoral thesis aims to reconstruct Holocene climate and environmental changes in NE Germany based on annually laminated lake sediments. The work contributes to the ICLEA project (Integrated CLimate and Landscape Evolution Analyses). ICLEA intends to compare multiple high-resolution proxy records with independent chronologies from the N central European lowlands, in order to disentangle the impact of climate change and human land use on landscape development during the Lateglacial and Holocene. In this respect, two study sites in NE Germany are investigated in this doctoral project, Lake Tiefer See and palaeolake Wukenfurche. While both sediment records are studied with a combination of high-resolution sediment microfacies and geochemical analyses (e.g. µ-XRF, carbon geochemistry and stable isotopes), detailed proxy understanding mainly focused on the continuous 7.7 m long sediment core from Lake Tiefer See covering the last ~6000 years. Three main objectives are pursued at Lake Tiefer See: (1) to perform a reliable and independent chronology, (2) to establish microfacies and geochemical proxies as indicators for climate and environmental changes, and (3) to trace the effects of climate variability and human activity on sediment deposition. Addressing the first aim, a reliable chronology of Lake Tiefer See is compiled by using a multiple-dating concept. Varve counting and tephra findings form the chronological framework for the last ~6000 years. The good agreement with independent radiocarbon dates of terrestrial plant remains verifies the robustness of the age model. The resulting reliable and independent chronology of Lake Tiefer See and, additionally, the identification of nine tephras provide a valuable base for detailed comparison and synchronization of the Lake Tiefer See data set with other climate records. The sediment profile of Lake Tiefer See exhibits striking alternations between well-varved and non-varved sediment intervals. The combination of microfacies, geochemical and microfossil (i.e. Cladocera and diatom) analyses indicates that these changes of varve preservation are caused by variations of lake circulation in Lake Tiefer See. An exception is the well-varved sediment deposited since AD 1924, which is mainly influenced by human-induced lake eutrophication. Well-varved intervals before the 20th century are considered to reflect phases of reduced lake circulation and, consequently, stronger anoxic conditions. Instead, non-varved intervals indicate increased lake circulation in Lake Tiefer See, leading to more oxygenated conditions at the lake ground. Furthermore, lake circulation is not only influencing sediment deposition, but also geochemical processes in the lake. As, for example, the proxy meaning of δ13COM varies in time in response to changes of the oxygen regime in the lake hypolinion. During reduced lake circulation and stronger anoxic conditions δ13COM is influenced by microbial carbon cycling. In contrast, organic matter degradation controls δ13COM during phases of intensified lake circulation and more oxygenated conditions. The varve preservation indicates an increasing trend of lake circulation at Lake Tiefer See after ~4000 cal a BP. This trend is superimposed by decadal to centennial scale variability of lake circulation intensity. Comparison to other records in Central Europe suggests that the long-term trend is probably related to gradual changes in Northern Hemisphere orbital forcing, which induced colder and windier conditions in Central Europe and, therefore, reinforced lake circulation. Decadal to centennial scale periods of increased lake circulation coincide with settlement phases at Lake Tiefer See, as inferred from pollen data of the same sediment record. Deforestation reduced the wind shelter of the lake, which probably increased the sensitivity of lake circulation to wind stress. However, results of this thesis also suggest that several of these phases of increased lake circulation are additionally reinforced by climate changes. A first indication is provided by the comparison to the Baltic Sea record, which shows striking correspondence between major non-varved intervals at Lake Tiefer See and bioturbated sediments in the Baltic Sea. Furthermore, a preliminary comparison to the ICLEA study site Lake Czechowskie (N central Poland) shows a coincidence of at least three phases of increased lake circulation in both lakes, which concur with periods of known climate changes (2.8 ka event, 'Migration Period' and 'Little Ice Age'). These results suggest an additional over-regional climate forcing also on short term increased of lake circulation in Lake Tiefer See. In summary, the results of this thesis suggest that lake circulation at Lake Tiefer See is driven by a combination of long-term and short-term climate changes as well as of anthropogenic deforestation phases. Furthermore, the lake circulation drives geochemical cycles in the lake affecting the meaning of proxy data. Therefore, the work presented here expands the knowledge of climate and environmental variability in NE Germany. Furthermore, the integration of the Lake Tiefer See multi-proxy record in a regional comparison with another ICLEA side, Lake Czechowskie, enabled to better decipher climate changes and human impact on the lake system. These first results suggest a huge potential for further detailed regional comparisons to better understand palaeoclimate dynamics in N central Europe.}, language = {en} } @phdthesis{Chen2016, author = {Chen, Kejie}, title = {Real-time GNSS for fast seismic source inversion and tsunami early warning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93174}, school = {Universit{\"a}t Potsdam}, pages = {xii, 81}, year = {2016}, abstract = {Over the past decades, rapid and constant advances have motivated GNSS technology to approach the ability to monitor transient ground motions with mm to cm accuracy in real-time. As a result, the potential of using real-time GNSS for natural hazards prediction and early warning has been exploited intensively in recent years, e.g., landslides and volcanic eruptions monitoring. Of particular note, compared with traditional seismic instruments, GNSS does not saturate or tilt in terms of co-seismic displacement retrieving, which makes it especially valuable for earthquake and earthquake induced tsunami early warning. In this thesis, we focus on the application of real-time GNSS to fast seismic source inversion and tsunami early warning. Firstly, we present a new approach to get precise co-seismic displacements using cost effective single-frequency receivers. As is well known, with regard to high precision positioning, the main obstacle for single-frequency GPS receiver is ionospheric delay. Considering that over a few minutes, the change of ionospheric delay is almost linear, we constructed a linear model for each satellite to predict ionospheric delay. The effectiveness of this method has been validated by an out-door experiment and 2011 Tohoku event, which confirms feasibility of using dense GPS networks for geo-hazard early warning at an affordable cost. Secondly, we extended temporal point positioning from GPS-only to GPS/GLONASS and assessed the potential benefits of multi-GNSS for co-seismic displacement determination. Out-door experiments reveal that when observations are conducted in an adversary environment, adding a couple of GLONASS satellites could provide more reliable results. The case study of 2015 Illapel Mw 8.3 earthquake shows that the biases between co-seismic displacements derived from GPS-only and GPS/GLONASS vary from station to station, and could be up to 2 cm in horizontal direction and almost 3 cm in vertical direction. Furthermore, slips inverted from GPS/GLONASS co-seismic displacements using a layered crust structure on a curved plane are shallower and larger for the Illapel event. Thirdly, we tested different inversion tools and discussed the uncertainties of using real-time GNSS for tsunami early warning. To be exact, centroid moment tensor inversion, uniform slip inversion using a single Okada fault and distributed slip inversion in layered crust on a curved plane were conducted using co-seismic displacements recorded during 2014 Pisagua earthquake. While the inversion results give similar magnitude and the rupture center, there are significant differences in depth, strike, dip and rake angles, which lead to different tsunami propagation scenarios. Even though, resulting tsunami forecasting along the Chilean coast is close to each other for all three models. Finally, based on the fact that the positioning performance of BDS is now equivalent to GPS in Asia-Pacific area and Manila subduction zone has been identified as a zone of potential tsunami hazard, we suggested a conceptual BDS/GPS network for tsunami early warning in South China Sea. Numerical simulations with two earthquakes (Mw 8.0 and Mw 7.5) and induced tsunamis demonstrate the viability of this network. In addition, the advantage of BDS/GPS over a single GNSS system by source inversion grows with decreasing earthquake magnitudes.}, language = {en} } @phdthesis{Wolter2016, author = {Wolter, Juliane}, title = {Mid- to Late Holocene environmental dynamics on the Yukon Coastal Plain and Herschel Island (Canada) - envidence from polygonal peatlands and lake sediment}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2016}, language = {en} } @phdthesis{Rieckh2016, author = {Rieckh, Helene}, title = {Hydropedological analysis of erosion-affected soils in a hummocky ground-moraine landscape - interactions of water flow, dissolved carbon and particle transport, grop growth, and pedogenesis}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2016}, language = {en} } @phdthesis{Kaethner2016, author = {K{\"a}thner, Jana}, title = {Interaction of spatial variability characterized by soil electrical conductivity and plant water status related to generative growth of fruit trees}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397666}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 104, IV}, year = {2016}, abstract = {Precision horticulture beschreibt ein neues Bewirtschaftungskonzept im Gartenbau, bei dem teilfl{\"a}chenspezifisch oder an den Einzelbaum angepasste Maßnahmen eine ressourcenschonende, intensitve Produktion erm{\"o}glichen. Die Datengrundlage wird aus r{\"a}umlich aufgel{\"o}sten Messungen aus der Produktionsanlage gewonnen, wobei sowohl kurzfristige Faktoren wie der effektive Pflanzenwasserzustand als auch langfristige Faktoren wie die Bodenvariabilit{\"a}t zur Informationsgewinnung genutzt werden k{\"o}nnen. Die vorliegende Arbeit umfasst eine Untersuchung der scheinbaren elektrischen Leitf{\"a}higkeit des Bodens (ECa), des Pflanzenwasserzustandes und der Fruchtqualit{\"a}t (zum Beispiel: Fruchtgr{\"o}ße) bei Prunus domestica L. (Pflaume) und Citrus x aurantium, Syn. Citrus paradisi (Grapefruit). Zielsetzungen der vorliegenden Arbeit waren (i) die Charakterisierung der 3D-Verteilung der scheinbaren elektrischen Leitf{\"a}higkeit des Bodens und Variabilit{\"a}t des Pflanzenwasserzustandes; (ii) die Untersuchung der Interaktion zwischen ECa, kumulativer Wassernutzungseffizienz (WUEc) und des crop water stress index (CWSI) bezogen auf die Fruchtqualit{\"a}t sowie (iii) eine M{\"o}glichkeit zur Einteilung von einzelnen B{\"a}umen hinsichtlich der Bew{\"a}sserung. Dazu fanden die Hauptuntersuchungen in der Pflaumenanlage statt. Diese Obstanlage befindet sich in Hanglage (3°) auf pleistoz{\"a}nen und postpleistoz{\"a}nen Substraten in semi-humiden Klima (Potsdam, Deutschland) und umfasst eine Fl{\"a}che von 0,37 ha mit 156 B{\"a}umen der Kultursorte ˈTophit Plusˈ auf der Unterlage Wavit. Die Anlage wurde 2009 mit ein und zwei-j{\"a}hrigen B{\"a}umen in einem Pflanzabstand von 4 m entlang der Bew{\"a}sserung und 5 m zwischen den Reihen angelegt. Dreimal pro Woche wurden die B{\"a}ume mit einer 50 cm {\"u}ber dem Boden installierten Tr{\"o}pfchenbew{\"a}sserung mit 1,6 l pro Baum bew{\"a}ssert. Mit Hilfe geoelektrischer Messungen wurde die scheinbare elektrische Leitf{\"a}higkeit des Oberbodens (0,25 m) mit einem Elektrodenabstand von 0,5 m (4-point light hp) an jedem Baum gemessen. Dadurch wurde die Anlage hinsichtlich ECa r{\"a}umlich charakterisiert. Zus{\"a}tzlich erfolgten Tomographiemessungen zur 3D-Charakterisierung der ECa und punktuell die Beprobung von Bohrlochprofilen bis 1 m Tiefe. Die vegetativen, generativen und Fruchtqualit{\"a}tsdaten wurden an jedem Baum erhoben. Der momentane Pflanzenwasserzustand wurde mit der etablierten Scholander-Methode zur Wasserpotentialanalyse (Scholander Bombe) punktuell und mit Thermalaufnahmen fl{\"a}chendeckend bestimmt. Die Thermalaufnahmen erfolgten mit einer Infrarot-Kamera (ThermaCam SC 500), die auf einem Traktor in 3,3 m H{\"o}he {\"u}ber dem Boden montiert war. Die Thermalaufnahmen (320 x 240 Pixel) der Kronenoberfl{\"a}che wurden mit einem {\"O}ffnungswinkel von 45° und einer geometrischen Aufl{\"o}sung von 6,41 mm x 8,54 mm aufgenommen. Mit Hilfe der Kronentemperatur aus den Thermalbildern und den Temperaturen eines nassen und trockenen Referenzblattes wurde der CWSI berechnet. Es wurde die Anpassung des CWSI f{\"u}r die Messung in semi-humidem Klima erarbeitet, wobei die Erhebung der Referenztemperaturen automatisiert aus den Thermalbildern erfolgte. Die Boniturdaten wurden mit Hilfe eines Varianz-Stabilisierungsverfahrens in eine Normalverteilung transformiert. Die statistischen Analysen sowie die automatisierte Auswertungsroutine erfolgten mit eigenen Skripten in MATLAB® (R2010b sowie R2016a) und einem freien Programm (spatialtoolbox). Die Hot-spot Analysen dienten der Pr{\"u}fung, ob ein beobachtetes Muster statistisch signifikant ist. Evaluiert wurde die Methode mit der etablierten k-mean Analyse. Zum Testen der Hot-spot Analyse wurden ECa, Stammumfang und Ertrag Daten aus einer Grapefruitanlage (Adana, T{\"u}rkei) mit 179 B{\"a}umen auf einem Boden vom Typ Xerofkuvent mit toniger und tonig-lehmiger Textur herangezogen. Die {\"U}berpr{\"u}fung der Interaktion zwischen den kritischen Werten aus den Boden- und Pflanzenwasserzustandsinformationen zu den vegetativen und generativen Pflanzenwachtumsvariablen erfolgte durch die Anwendung der ANOVA und die Ermittlung des Korrelationskoeffizienten. In der Arbeit konnte gezeigt werden, dass die Variabilit{\"a}t der Boden- und Pflanzeninformationen in Obstanlagen auch kleinr{\"a}umig hoch ist. Es konnte gezeigt werden, dass die r{\"a}umlich gefundenen Muster in den ECa {\"u}ber die Jahre zwischen 2011-2012 (r = 0.88) beziehungsweise 2012-2013 (r = 0.71) stabil geblieben sind. Zum anderen wurde gezeigt, dass eine CWSI-Bestimmung auch im semi-humiden Klima m{\"o}glich ist. Es wurde ein Zusammenhang (r = - 0.65, p < 0.0001) mit der etablierten Methode der Blattwasser-potentialanalyse ermittelt. Die Interaktion zwischen der ECa aus verschiedenen Tiefen und den Pflanzenvariablen ergab einen hoch signifikanten Zusammenhang mit dem Oberboden, in dem das Bew{\"a}sserungswasser zu finden war. Es wurde eine Korrelation zwischen Ertrag und ECatopsoil von r = 0.52 ermittelt. Durch die Anwendung der Hot-spot Analyse konnten Extremwerte in den r{\"a}umlichen Daten ermittelt werden. Diese Extrema dienten zur Einteilung der Zonen in cold-spot, random und hot-spot. Die random Zone weist die h{\"o}chsten Korrelationen zu den Pflanzenvariablen auf. Ferner konnte gezeigt werden, dass bereits im semi-humiden Klima der Pflanzenwasserstatus entscheidend zur Fruchtqualit{\"a}t beitr{\"a}gt. Zusammenfassend l{\"a}sst sich sagen, dass die r{\"a}umliche Variabilit{\"a}t der Fruchtqualit{\"a}t durch die Interaktion von Wassernutzungseffizienz und CWSI sowie in geringerem Maße durch den ECa des Bodens. In der Pflaumenanlage im semi-humiden Klima war die Bew{\"a}sserung ausschlaggebend f{\"u}r die Produktion von qualitativ hochwertigen Fr{\"u}chten.}, language = {en} } @phdthesis{Lontsi2016, author = {Lontsi, Agostiny Marrios}, title = {1D shallow sedimentary subsurface imaging using ambient noise and active seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103807}, school = {Universit{\"a}t Potsdam}, pages = {xix, 119}, year = {2016}, abstract = {The Earth's shallow subsurface with sedimentary cover acts as a waveguide to any incoming wavefield. Within the framework of my thesis, I focused on the characterization of this shallow subsurface within tens to few hundreds of meters of sediment cover. I imaged the seismic 1D shear wave velocity (and possibly the 1D compressional wave velocity). This information is not only required for any seismic risk assessment, geotechnical engineering or microzonation activities, but also for exploration and global seismology where site effects are often neglected in seismic waveform modeling. First, the conventional frequency-wavenumber (f - k) technique is used to derive the dispersion characteristic of the propagating surface waves recorded using distinct arrays of seismometers in 1D and 2D configurations. Further, the cross-correlation technique is applied to seismic array data to estimate the Green's function between receivers pairs combination assuming one is the source and the other the receiver. With the consideration of a 1D media, the estimated cross-correlation Green's functions are sorted with interstation distance in a virtual 1D active seismic experiment. The f - k technique is then used to estimate the dispersion curves. This integrated analysis is important for the interpretation of a large bandwidth of the phase velocity dispersion curves and therefore improving the resolution of the estimated 1D Vs profile. Second, the new theoretical approach based on the Diffuse Field Assumption (DFA) is used for the interpretation of the observed microtremors H/V spectral ratio. The theory is further extended in this research work to include not only the interpretation of the H/V measured at the surface, but also the H/V measured at depths and in marine environments. A modeling and inversion of synthetic H/V spectral ratio curves on simple predefined geological structures shows an almost perfect recovery of the model parameters (mainly Vs and to a lesser extent Vp). These results are obtained after information from a receiver at depth has been considered in the inversion. Finally, the Rayleigh wave phase velocity information, estimated from array data, and the H/V(z, f) spectral ratio, estimated from a single station data, are combined and inverted for the velocity profile information. Obtained results indicate an improved depth resolution in comparison to estimations using the phase velocity dispersion curves only. The overall estimated sediment thickness is comparable to estimations obtained by inverting the full micortremor H/V spectral ratio.}, language = {en} } @phdthesis{Schintgen2016, author = {Schintgen, Tom Vincent}, title = {The geothermal potential of Luxembourg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87110}, school = {Universit{\"a}t Potsdam}, pages = {XXII, 313}, year = {2016}, abstract = {The aim of this work is the evaluation of the geothermal potential of Luxembourg. The approach consists in a joint interpretation of different types of information necessary for a first rather qualitative assessment of deep geothermal reservoirs in Luxembourg and the adjoining regions in the surrounding countries of Belgium, France and Germany. For the identification of geothermal reservoirs by exploration, geological, thermal, hydrogeological and structural data are necessary. Until recently, however, reliable information about the thermal field and the regional geology, and thus about potential geothermal reservoirs, was lacking. Before a proper evaluation of the geothermal potential can be performed, a comprehensive survey of the geology and an assessment of the thermal field are required. As a first step, the geology and basin structure of the Mesozoic Trier-Luxembourg Basin (TLB) is reviewed and updated using recently published information on the geology and structures as well as borehole data available in Luxembourg and the adjoining regions. A Bouguer map is used to get insight in the depth, morphology and structures in the Variscan basement buried beneath the Trier-Luxembourg Basin. The geological section of the old Cessange borehole is reinterpreted and provides, in combination with the available borehole data, consistent information for the production of isopach maps. The latter visualize the synsedimentary evolution of the Trier-Luxembourg Basin. Complementary, basin-wide cross sections illustrate the evolution and structure of the Trier-Luxembourg Basin. The knowledge gained does not support the old concept of the Weilerbach Mulde. The basin-wide cross sections, as well as the structural and sedimentological observations in the Trier-Luxembourg Basin suggest that the latter probably formed above a zone of weakness related to a buried Rotliegend graben. The inferred graben structure designated by SE-Luxembourg Graben (SELG) is located in direct southwestern continuation of the Wittlicher Rotliegend-Senke. The lack of deep boreholes and subsurface temperature prognosis at depth is circumnavigated by using thermal modelling for inferring the geothermal resource at depth. For this approach, profound structural, geological and petrophysical input data are required. Conceptual geological cross sections encompassing the entire crust are constructed and further simplified and extended to lithospheric scale for their utilization as thermal models. The 2-D steady state and conductive models are parameterized by means of measured petrophysical properties including thermal conductivity, radiogenic heat production and density. A surface heat flow of 75 ∓ 7 (2δ) mW m-2 for verification of the thermal models could be determined in the area. The models are further constrained by the geophysically-estimated depth of the lithosphere-asthenosphere boundary (LAB) defined by the 1300 °C isotherm. A LAB depth of 100 km, as seismically derived for the Ardennes, provides the best fit with the measured surface heat flow. The resulting mantle heat flow amounts to ∼40 mW m-2. Modelled temperatures are in the range of 120-125 °C at 5 km depth and of 600-650 °C at the crust/mantle discontinuity (Moho). Possible thermal consequences of the 10-20 Ma old Eifel plume, which apparently caused upwelling of the asthenospheric mantle to 50-60 km depth, were modelled in a steady-state thermal scenario resulting in a surface heat flow of at least 91 mW m-2 (for the plume top at 60 km) in the Eifel region. Available surface heat-flow values are significantly lower (65-80 mW m-2) and indicate that the plume-related heating has not yet entirely reached the surface. Once conceptual geological models are established and the thermal regime is assessed, the geothermal potential of Luxembourg and the surrounding areas is evaluated by additional consideration of the hydrogeology, the stress field and tectonically active regions. On the one hand, low-enthalpy hydrothermal reservoirs in Mesozoic reservoirs in the Trier-Luxembourg Embayment (TLE) are considered. On the other hand, petrothermal reservoirs in the Lower Devonian basement of the Ardennes and Eifel regions are considered for exploitation by Enhanced/Engineered Geothermal Systems (EGS). Among the Mesozoic aquifers, the Buntsandstein aquifer characterized by temperatures of up to 50 °C is a suitable hydrothermal reservoir that may be exploited by means of heat pumps or provide direct heat for various applications. The most promising area is the zone of the SE-Luxembourg Graben. The aquifer is warmest underneath the upper Alzette River valley and the limestone plateau in Lorraine, where the Buntsandstein aquifer lies below a thick Mesozoic cover. At the base of an inferred Rotliegend graben in the same area, temperatures of up to 75 °C are expected. However, geological and hydraulic conditions are uncertain. In the Lower Devonian basement, thick sandstone-/quartzite-rich formations with temperatures >90 °C are expected at depths >3.5 km and likely offer the possibility of direct heat use. The setting of the S{\"u}deifel (South Eifel) region, including the M{\"u}llerthal region near Echternach, as a tectonically active zone may offer the possibility of deep hydrothermal reservoirs in the fractured Lower Devonian basement. Based on the recent findings about the structure of the Trier-Luxembourg Basin, the new concept presents the M{\"u}llerthal-S{\"u}deifel Depression (MSD) as a Cenozoic structure that remains tectonically active and subsiding, and therefore is relevant for geothermal exploration. Beyond direct use of geothermal heat, the expected modest temperatures at 5 km depth (about 120 °C) and increased permeability by EGS in the quartzite-rich Lochkovian could prospectively enable combined geothermal heat production and power generation in Luxembourg and the western realm of the Eifel region.}, language = {en} } @phdthesis{Bande2016, author = {Bande, Alejandro}, title = {The tectonic evolution of the western Tien Shan}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398933}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 119}, year = {2016}, abstract = {Intracontinental deformation usually is a result of tectonic forces associated with distant plate collisions. In general, the evolution of mountain ranges and basins in this environment is strongly controlled by the distribution and geometries of preexisting structures. Thus, predictive models usually fail in forecasting the deformation evolution in these kinds of settings. Detailed information on each range and basin-fill is vital to comprehend the evolution of intracontinental mountain belts and basins. In this dissertation, I have investigated the complex Cenozoic tectonic evolution of the western Tien Shan in Central Asia, which is one of the most active intracontinental ranges in the world. The work presented here combines a broad array of datasets, including thermo- and geochronology, paleoenvironmental interpretations, sediment provenance and subsurface interpretations in order to track changes in tectonic deformation. Most of the identified changes are connected and can be related to regional-scale processes that governed the evolution of the western Tien Shan. The NW-SE trending Talas-Fergana fault (TFF) separates the western from the central Tien Shan and constitutes a world-class example of the influence of preexisting anisotropies on the subsequent structural development of a contractile orogen. While to the east most of ranges and basins have a sub-parallel E-W trend, the triangular-shaped Fergana basin forms a substantial feature in the western Tien Shan morphology with ranges on all three sides. In this thesis, I present 55 new thermochronologic ages (apatite fission track and zircon (U-Th)/He)) used to constrain exhumation histories of several mountain ranges in the western Tien Shan. At the same time, I analyzed the Fergana basin-fill looking for progressive changes in sedimentary paleoenvironments, source areas and stratal geometrical configurations in the subsurface and outcrops. The data presented in this thesis suggests that low cooling rates (<1°C Myr-1), calm depositional environments, and low depositional rates (<10 m Myr-1) were widely distributed across the western Tien Shan, describing a quiescent tectonic period throughout the Paleogene. Increased cooling rates in the late Cenozoic occurred diachronously and with variable magnitudes in different ranges. This rapid cooling stage is interpreted to represent increased erosion caused by active deformation and constrains the onset of Cenozoic deformation in the western Tien Shan. Time-temperature histories derived from the northwestern Tien Shan samples show an increase in cooling rates by ~25 Ma. This event is correlated with a synchronous pulse iv in the South Tien Shan. I suggest that strike-slip motion along the TFF commenced at the Oligo-Miocene boundary, facilitating CCW rotation of the Fergana basin and enabling exhumation of the linked horsetail splays. Higher depositional rates (~150 m Myr-1) in the Oligo-Miocene section (Massaget Fm.) of the Fergana basin suggest synchronous deformation in the surrounding ranges. The central Alai Range also experienced rapid cooling around this time, suggesting that the onset of intramontane basin fragmentation and isolation is coeval. These results point to deformation starting simultaneously in the late Oligocene - early Miocene in geographically distant mountain ranges. I suggest that these early uplifts are controlled by reactivated structures (like the TFF), which are probably the frictionally weakest and most-suitably oriented for accommodating and transferring N-S horizontal shortening along the western Tien Shan. Afterwards, in the late Miocene (~10 Ma), a period of renewed rapid cooling affected the Tien Shan and most mountain ranges and inherited structures started to actively deform. This episode is widely distributed and an increase in exhumation is interpreted in most of the sampled ranges. Moreover, the Pliocene section in the basin subsurface shows the higher depositional rates (>180 m Myr-1) and higher energy facies. The deformation and exhumation increase further contributed to intramontane basin partitioning. Overall, the interpretation is that the Tien Shan and much of Central Asia suffered a global increase in the rate of horizontal crustal shortening. Previously, stress transfer along the rigid Tarim block or Pamir indentation has been proposed to account for Himalayan hinterland deformation. However, the extent of the episode requires a different and broader geodynamic driver.}, language = {en} } @phdthesis{Olonscheck2016, author = {Olonscheck, Mady}, title = {Climate change impacts on electricity and residential energy demand}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98378}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 127}, year = {2016}, abstract = {The energy sector is both affected by climate change and a key sector for climate protection measures. Energy security is the backbone of our modern society and guarantees the functioning of most critical infrastructure. Thus, decision makers and energy suppliers of different countries should be familiar with the factors that increase or decrease the susceptibility of their electricity sector to climate change. Susceptibility means socioeconomic and structural characteristics of the electricity sector that affect the demand for and supply of electricity under climate change. Moreover, the relevant stakeholders are supposed to know whether the given national energy and climate targets are feasible and what needs to be done in order to meet these targets. In this regard, a focus should be on the residential building sector as it is one of the largest energy consumers and therefore emitters of anthropogenic CO 2 worldwide. This dissertation addresses the first aspect, namely the susceptibility of the electricity sector, by developing a ranked index which allows for quantitative comparison of the electricity sector susceptibility of 21 European countries based on 14 influencing factors. Such a ranking has not been completed to date. We applied a sensitivity analysis to test the relative effect of each influencing factor on the susceptibility index ranking. We also discuss reasons for the ranking position and thus the susceptibility of selected countries. The second objective, namely the impact of climate change on the energy demand of buildings, is tackled by means of a new model with which the heating and cooling energy demand of residential buildings can be estimated. We exemplarily applied the model to Germany and the Netherlands. It considers projections of future changes in population, climate and the insulation standards of buildings, whereas most of the existing studies only take into account fewer than three different factors that influence the future energy demand of buildings. Furthermore, we developed a comprehensive retrofitting algorithm with which the total residential building stock can be modeled for the first time for each year in the past and future. The study confirms that there is no correlation between the geographical location of a country and its position in the electricity sector susceptibility ranking. Moreover, we found no pronounced pattern of susceptibility influencing factors between countries that ranked higher or lower in the index. We illustrate that Luxembourg, Greece, Slovakia and Italy are the countries with the highest electricity sector susceptibility. The electricity sectors of Norway, the Czech Republic, Portugal and Denmark were found to be least susceptible to climate change. Knowledge about the most important factors for the poor and good ranking positions of these countries is crucial for finding adequate adaptation measures to reduce the susceptibility of the electricity sector. Therefore, these factors are described within this study. We show that the heating energy demand of residential buildings will strongly decrease in both Germany and the Netherlands in the future. The analysis for the Netherlands focused on the regional level and a finer temporal resolution which revealed strong variations in the future heating energy demand changes by province and by month. In the German study, we additionally investigated the future cooling energy demand and could demonstrate that it will only slightly increase up to the middle of this century. Thus, increases in the cooling energy demand are not expected to offset reductions in heating energy demand. The main factor for substantial heating energy demand reductions is the retrofitting of buildings. We are the first to show that the given German and Dutch energy and climate targets in the building sector can only be met if the annual retrofitting rates are substantially increased. The current rate of only about 1 \% of the total building stock per year is insufficient for reaching a nearly zero-energy demand of all residential buildings by the middle of this century. To reach this target, it would need to be at least tripled. To sum up, this thesis emphasizes that country-specific characteristics are decisive for the electricity sector susceptibility of European countries. It also shows for different scenarios how much energy is needed in the future to heat and cool residential buildings. With this information, existing climate mitigation and adaptation measures can be justified or new actions encouraged.}, language = {en} } @phdthesis{Hoffmann2016, author = {Hoffmann, Bernd}, title = {Plant organic matter mobilization and export in fluvial systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99336}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 131}, year = {2016}, abstract = {The global carbon cycle is closely linked to Earth's climate. In the context of continuously unchecked anthropogenic CO₂ emissions, the importance of natural CO₂ bond and carbon storage is increasing. An important biogenic mechanism of natural atmospheric CO₂ drawdown is the photosynthetic carbon fixation in plants and the subsequent longterm deposition of plant detritus in sediments. The main objective of this thesis is to identify factors that control mobilization and transport of plant organic matter (pOM) through rivers towards sedimentation basins. I investigated this aspect in the eastern Nepalese Arun Valley. The trans-Himalayan Arun River is characterized by a strong elevation gradient (205 - 8848 m asl) that is accompanied by strong changes in ecology and climate ranging from wet tropical conditions in the Himalayan forelad to high alpine tundra on the Tibetan Plateau. Therefore, the Arun is an excellent natural laboratory, allowing the investigation of the effect of vegetation cover, climate, and topography on plant organic matter mobilization and export in tributaries along the gradient. Based on hydrogen isotope measurements of plant waxes sampled along the Arun River and its tributaries, I first developed a model that allows for an indirect quantification of pOM contributed to the mainsetm by the Arun's tributaries. In order to determine the role of climatic and topographic parameters of sampled tributary catchments, I looked for significant statistical relations between the amount of tributary pOM export and tributary characteristics (e.g. catchment size, plant cover, annual precipitation or runoff, topographic measures). On one hand, I demonstrated that pOMsourced from the Arun is not uniformly derived from its entire catchment area. On the other, I showed that dense vegetation is a necessary, but not sufficient, criterion for high tributary pOM export. Instead, I identified erosion and rainfall and runoff as key factors controlling pOM sourcing in the Arun Valley. This finding is supported by terrestrial cosmogenic nuclide concentrations measured on river sands along the Arun and its tributaries in order to quantify catchment wide denudation rates. Highest denudation rates corresponded well with maximum pOM mobilization and export also suggesting the link between erosion and pOM sourcing. The second part of this thesis focusses on the applicability of stable isotope records such as plant wax n-alkanes in sediment archives as qualitative and quantitative proxy for the variability of past Indian Summer Monsoon (ISM) strength. First, I determined how ISM strength affects the hydrogen and oxygen stable isotopic composition (reported as δD and δ18O values vs. Vienna Standard Mean Ocean Water) of precipitation in the Arun Valley and if this amount effect (Dansgaard, 1964) is strong enough to be recorded in potential paleo-ISM isotope proxies. Second, I investigated if potential isotope records across the Arun catchment reflect ISM strength dependent precipitation δD values only, or if the ISM isotope signal is superimposed by winter precipitation or glacial melt. Furthermore, I tested if δD values of plant waxes in fluvial deposits reflect δD values of environmental waters in the respective catchments. I showed that surface water δD values in the Arun Valley and precipitation δD from south of the Himalaya both changed similarly during two consecutive years (2011 \& 2012) with distinct ISM rainfall amounts (~20\% less in 2012). In order to evaluate the effect of other water sources (Winter-Westerly precipitation, glacial melt) and evapotranspiration in the Arun Valley, I analysed satellite remote sensing data of rainfall distribution (TRMM 3B42V7), snow cover (MODIS MOD10C1), glacial coverage (GLIMSdatabase, Global Land Ice Measurements from Space), and evapotranspiration (MODIS MOD16A2). In addition to the predominant ISM in the entire catchment I found through stable isotope analysis of surface waters indications for a considerable amount of glacial melt derived from high altitude tributaries and the Tibetan Plateau. Remotely sensed snow cover data revealed that the upper portion of the Arun also receives considerable winter precipitation, but the effect of snow melt on the Arun Valley hydrology could not be evaluated as it takes place in early summer, several months prior to our sampling campaigns. However, I infer that plant wax records and other potential stable isotope proxy archives below the snowline are well-suited for qualitative, and potentially quantitative, reconstructions of past changes of ISM strength.}, language = {en} } @phdthesis{Teshebaeva2016, author = {Teshebaeva, Kanayim}, title = {SAR interferometry analysis of surface processes in the Pamir - Tien Shan active orogens - emphasis on coseismic deformation and landslides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96743}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2016}, abstract = {This thesis presents new approaches of SAR methods and their application to tectonically active systems and related surface deformation. With 3 publications two case studies are presented: (1) The coseismic deformation related to the Nura earthquake (5th October 2008, magnitude Mw 6.6) at the eastern termination of the intramontane Alai valley. Located between the southern Tien Shan and the northern Pamir the coseismic surface displacements are analysed using SAR (Synthetic Aperture RADAR) data. The results show clear gradients in the vertical and horizontal directions along a complex pattern of surface ruptures and active faults. To integrate and to interpret these observations in the context of the regional active tectonics a SAR data analysis is complemented with seismological data and geological field observations. The main moment release of the Nura earthquake appears to be on the Pamir Frontal thrust, while the main surface displacements and surface rupture occurred in the footwall and along of the NE-SW striking Irkeshtam fault. With InSAR data from ascending and descending satellite tracks along with pixel offset measurements the Nura earthquake source is modelled as a segmented rupture. One fault segment corresponds to high-angle brittle faulting at the Pamir Frontal thrust and two more fault segments show moderate-angle and low-friction thrusting at the Irkeshtam fault. The integrated analysis of the coseismic deformation argues for a rupture segmentation and strain partitioning associated to the earthquake. It possibly activated an orogenic wedge in the easternmost segment of the Pamir-Alai collision zone. Further, the style of the segmentation may be associated with the presence of Paleogene evaporites. (2) The second focus is put on slope instabilities and consequent landslides in the area of prominent topographic transition between the Fergana basin and high-relief Alai range. The Alai range constitutes an active orogenic wedge of the Pamir - Tien Shan collision zone that described as a progressively northward propagating fold-and-thrust belt. The interferometric analysis of ALOS/PALSAR radar data integrates a period of 4 years (2007-2010) based on the Small Baseline Subset (SBAS) time-series technique to assess surface deformation with millimeter surface change accuracy. 118 interferograms are analyzed to observe spatially-continuous movements with downslope velocities up to 71 mm/yr. The obtained rates indicate slow movement of the deep-seated landslides during the observation time. We correlated these movements with precipitation and seismic records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with one earthquake event. In the next step, to understand the spatial pattern of landslide processes, the tectonic morphologic and lithologic settings are combined with the patterns of surface deformation. We demonstrate that the lithological and tectonic structural patterns are the main controlling factors for landslide occurrence and surface deformation magnitudes. Furthermore active contractional deformation in the front of the orogenic wedge is the main mechanism to sustain relief. Some of the slower but continuously moving slope instabilities are directly related to tectonically active faults and unconsolidated young Quaternary syn-orogenic sedimentary sequences. The InSAR observed slow moving landslides represent active deep-seated gravitational slope deformation phenomena which is first time observed in the Tien Shan mountains. Our approach offers a new combination of InSAR techniques and tectonic aspects to localize and understand enhanced slope instabilities in tectonically active mountain fronts in the Kyrgyz Tien Shan.}, language = {en} } @phdthesis{Hohenbrink2016, author = {Hohenbrink, Tobias Ludwig}, title = {Turning a problem into a solution: heterogeneities in soil hydrology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101485}, school = {Universit{\"a}t Potsdam}, pages = {x, 123}, year = {2016}, abstract = {It is commonly recognized that soil moisture exhibits spatial heterogeneities occurring in a wide range of scales. These heterogeneities are caused by different factors ranging from soil structure at the plot scale to land use at the landscape scale. There is an urgent need for effi-cient approaches to deal with soil moisture heterogeneity at large scales, where manage-ment decisions are usually made. The aim of this dissertation was to test innovative ap-proaches for making efficient use of standard soil hydrological data in order to assess seep-age rates and main controls on observed hydrological behavior, including the role of soil het-erogeneities. As a first step, the applicability of a simplified Buckingham-Darcy method to estimate deep seepage fluxes from point information of soil moisture dynamics was assessed. This was done in a numerical experiment considering a broad range of soil textures and textural het-erogeneities. The method performed well for most soil texture classes. However, in pure sand where seepage fluxes were dominated by heterogeneous flow fields it turned out to be not applicable, because it simply neglects the effect of water flow heterogeneity. In this study a need for new efficient approaches to handle heterogeneities in one-dimensional water flux models was identified. As a further step, an approach to turn the problem of soil moisture heterogeneity into a solu-tion was presented: Principal component analysis was applied to make use of the variability among soil moisture time series for analyzing apparently complex soil hydrological systems. It can be used for identifying the main controls on the hydrological behavior, quantifying their relevance, and describing their particular effects by functional averaged time series. The ap-proach was firstly tested with soil moisture time series simulated for different texture classes in homogeneous and heterogeneous model domains. Afterwards, it was applied to 57 mois-ture time series measured in a multifactorial long term field experiment in Northeast Germa-ny. The dimensionality of both data sets was rather low, because more than 85 \% of the total moisture variance could already be explained by the hydrological input signal and by signal transformation with soil depth. The perspective of signal transformation, i.e. analyzing how hydrological input signals (e.g., rainfall, snow melt) propagate through the vadose zone, turned out to be a valuable supplement to the common mass flux considerations. Neither different textures nor spatial heterogeneities affected the general kind of signal transfor-mation showing that complex spatial structures do not necessarily evoke a complex hydro-logical behavior. In case of the field measured data another 3.6\% of the total variance was unambiguously explained by different cropping systems. Additionally, it was shown that dif-ferent soil tillage practices did not affect the soil moisture dynamics at all. The presented approach does not require a priori assumptions about the nature of physical processes, and it is not restricted to specific scales. Thus, it opens various possibilities to in-corporate the key information from monitoring data sets into the modeling exercise and thereby reduce model uncertainties.}, language = {en} } @phdthesis{Dannberg2016, author = {Dannberg, Juliane}, title = {Dynamics of mantle plumes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91024}, school = {Universit{\"a}t Potsdam}, pages = {162}, year = {2016}, abstract = {Mantle plumes are a link between different scales in the Earth's mantle: They are an important part of large-scale mantle convection, transporting material and heat from the core-mantle boundary to the surface, but also affect processes on a smaller scale, such as melt generation and transport and surface magmatism. When they reach the base of the lithosphere, they cause massive magmatism associated with the generation of large igneous provinces, and they can be related to mass extinction events (Wignall, 2001) and continental breakup (White and McKenzie, 1989). Thus, mantle plumes have been the subject of many previous numerical modelling studies (e.g. Farnetani and Richards, 1995; d'Acremont et al., 2003; Lin and van Keken, 2005; Sobolev et al., 2011; Ballmer et al., 2013). However, complex mechanisms, such as the development and implications of chemical heterogeneities in plumes, their interaction with mid-ocean ridges and global mantle flow, and melt ascent from the source region to the surface are still not very well understood; and disagreements between observations and the predictions of classical plume models have led to a challenge of the plume concept in general (Czamanske et al., 1998; Anderson, 2000; Foulger, 2011). Hence, there is a need for more sophisticated models that can explain the underlying physics, assess which properties and processes are important, explain how they cause the observations visible at the Earth's surface and provide a link between the different scales. In this work, integrated plume models are developed that investigate the effect of dense recycled oceanic crust on the development of mantle plumes, plume-ridge interaction under the influence of global mantle flow and melting and melt migration in form of two-phase flow. The presented analysis of these models leads to a new, updated picture of mantle plumes: Models considering a realistic depth-dependent density of recycled oceanic crust and peridotitic mantle material show that plumes with excess temperatures of up to 300 K can transport up to 15\% of recycled oceanic crust through the whole mantle. However, due to the high density of recycled crust, plumes can only advance to the base of the lithosphere directly if they have high excess temperatures, high plume volumes and the lowermost mantle is subadiabatic, or plumes rise from the top or edges of thermo-chemical piles. They might only cause minor surface uplift, and instead of the classical head-tail structure, these low-buoyancy plumes are predicted to be broad features in the lower mantle with much less pronounced plume heads. They can form a variety of shapes and regimes, including primary plumes directly advancing to the base of the lithosphere, stagnating plumes, secondary plumes rising from the core-mantle boundary or a pool of eclogitic material in the upper mantle and failing plumes. In the upper mantle, plumes are tilted and deflected by global mantle flow, and the shape, size and stability of the melting region is influenced by the distance from nearby plate boundaries, the speed of the overlying plate and the movement of the plume tail arriving from the lower mantle. Furthermore, the structure of the lithosphere controls where hot material is accumulated and melt is generated. In addition to melting in the plume tail at the plume arrival position, hot plume material flows upwards towards opening rifts, towards mid-ocean ridges and towards other regions of thinner lithosphere, where it produces additional melt due to decompression. This leads to the generation of either broad ridges of thickened magmatic crust or the separation into multiple thinner lines of sea mount chains at the surface. Once melt is generated within the plume, it influences its dynamics, lowering the viscosity and density, and while it rises the melt volume is increased up to 20\% due to decompression. Melt has the tendency to accumulate at the top of the plume head, forming diapirs and initiating small-scale convection when the plume reaches the base of the lithosphere. Together with the introduced unstable, high-density material produced by freezing of melt, this provides an efficient mechanism to thin the lithosphere above plume heads. In summary, this thesis shows that mantle plumes are more complex than previously considered, and linking the scales and coupling the physics of different processes occurring in mantle plumes can provide insights into how mantle plumes are influenced by chemical heterogeneities, interact with the lithosphere and global mantle flow, and are affected by melting and melt migration. Including these complexities in geodynamic models shows that plumes can also have broad plume tails, might produce only negligible surface uplift, can generate one or several volcanic island chains in interaction with a mid-ocean ridge, and can magmatically thin the lithosphere.}, language = {en} } @phdthesis{Mey2016, author = {Mey, J{\"u}rgen}, title = {Intermontane valley fills}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103158}, school = {Universit{\"a}t Potsdam}, pages = {xii, 111}, year = {2016}, abstract = {Sedimentary valley fills are a widespread characteristic of mountain belts around the world. They transiently store material over time spans ranging from thousands to millions of years and therefore play an important role in modulating the sediment flux from the orogen to the foreland and to oceanic depocenters. In most cases, their formation can be attributed to specific fluvial conditions, which are closely related to climatic and tectonic processes. Hence, valley-fill deposits constitute valuable archives that offer fundamental insight into landscape evolution, and their study may help to assess the impact of future climate change on sediment dynamics. In this thesis I analyzed intermontane valley-fill deposits to constrain different aspects of the climatic and tectonic history of mountain belts over multiple timescales. First, I developed a method to estimate the thickness distribution of valley fills using artificial neural networks (ANNs). Based on the assumption of geometrical similarity between exposed and buried parts of the landscape, this novel and highly automated technique allows reconstructing fill thickness and bedrock topography on the scale of catchments to entire mountain belts. Second, I used the new method for estimating the spatial distribution of post-glacial sediments that are stored in the entire European Alps. A comparison with data from exploratory drillings and from geophysical surveys revealed that the model reproduces the measurements with a root mean squared error (RMSE) of 70m and a coefficient of determination (R2) of 0.81. I used the derived sediment thickness estimates in combination with a model of the Last Glacial Maximum (LGM) icecap to infer the lithospheric response to deglaciation, erosion and deposition, and deduce their relative contribution to the present-day rock-uplift rate. For a range of different lithospheric and upper mantle-material properties, the results suggest that the long-wavelength uplift signal can be explained by glacial isostatic adjustment with a small erosional contribution and a substantial but localized tectonic component exceeding 50\% in parts of the Eastern Alps and in the Swiss Rh{\^o}ne Valley. Furthermore, this study reveals the particular importance of deconvolving the potential components of rock uplift when interpreting recent movements along active orogens and how this can be used to constrain physical properties of the Earth's interior. In a third study, I used the ANN approach to estimate the sediment thickness of alluviated reaches of the Yarlung Tsangpo River, upstream of the rapidly uplifting Namche Barwa massif. This allowed my colleagues and me to reconstruct the ancient river profile of the Yarlung Tsangpo, and to show that in the past, the river had already been deeply incised into the eastern margin of the Tibetan Plateau. Dating of basal sediments from drill cores that reached the paleo-river bed to 2-2.5 Ma are consistent with mineral cooling ages from the Namche Barwa massif, which indicate initiation of rapid uplift at ~4 Ma. Hence, formation of the Tsangpo gorge and aggradation of the voluminous valley fill was most probably a consequence of rapid uplift of the Namche Barwa massif and thus tectonic activity. The fourth and last study focuses on the interaction of fluvial and glacial processes at the southeastern edge of the Karakoram. Paleo-ice-extent indicators and remnants of a more than 400-m-thick fluvio-lacustrine valley fill point to blockage of the Shyok River, a main tributary of the upper Indus, by the Siachen Glacier, which is the largest glacier in the Karakoram Range. Field observations and 10Be exposure dating attest to a period of recurring lake formation and outburst flooding during the penultimate glaciation prior to ~110 ka. The interaction of Rivers and Glaciers all along the Karakorum is considered a key factor in landscape evolution and presumably promoted headward erosion of the Indus-Shyok drainage system into the western margin of the Tibetan Plateau. The results of this thesis highlight the strong influence of glaciation and tectonics on valley-fill formation and how this has affected the evolution of different mountain belts. In the Alps valley-fill deposition influenced the magnitude and pattern of rock uplift since ice retreat approximately 17,000 years ago. Conversely, the analyzed valley fills in the Himalaya are much older and reflect environmental conditions that prevailed at ~110 ka and ~2.5 Ma, respectively. Thus, the newly developed method has proven useful for inferring the role of sedimentary valley-fill deposits in landscape evolution on timescales ranging from 1,000 to 10,000,000 years.}, language = {en} } @phdthesis{Dey2016, author = {Dey, Saptarshi}, title = {Tectonic and climatic control on the evolution of the Himalayan mountain front}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103390}, school = {Universit{\"a}t Potsdam}, pages = {xii, 118}, year = {2016}, abstract = {Variations in the distribution of mass within an orogen may lead to transient sediment storage, which in turn might affect the state of stress and the level of fault activity. Distinguishing between different forcing mechanisms causing variations of sediment flux and tectonic activity, is therefore one of the most challenging tasks in understanding the spatiotemporal evolution of active mountain belts. The Himalayan mountain belt is one of the most significant Cenozoic collisional mountain belt, formed due to collision between northward-bound Indian Plate and the Eurasian Plate during the last 55-50 Ma. Ongoing convergence of these two tectonic plates is accommodated by faulting and folding within the Himalayan arc-shaped orogen and the continued lateral and vertical growth of the Tibetan Plateau and mountain belts adjacent to the plateau as well as regions farther north. Growth of the Himalayan orogen is manifested by the development of successive south-vergent thrust systems. These thrust systems divide the orogen into different morphotectonic domains. From north to south these thrusts are the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The growing topography interacts with moisture-bearing monsoonal winds, which results in pronounced gradients in rainfall, weathering, erosion and sediment transport toward the foreland and beyond. However, a fraction of this sediment is trapped and transiently stored within the intermontane valleys or 'dun's within the lower-elevation foothills of the range. Improved understanding of the spatiotemporal evolution of these sediment archives could provide a unique opportunity to decipher the triggers of variations in sediment production, delivery and storage in an actively deforming mountain belt and support efforts to test linkages between sediment volumes in intermontane basins and changes in the shallow crustal stress field. As sediment redistribution in mountain belts on timescales of 102-104 years can effect cultural characteristics and infrastructure in the intermontane valleys and may even impact the seismotectonics of a mountain belt, there is a heightened interest in understanding sediment-routing processes and causal relationships between tectonism, climate and topography. It is here at the intersection between tectonic processes and superposed climatic and sedimentary processes in the Himalayan orogenic wedge, where my investigation is focused on. The study area is the intermontane Kangra Basin in the northwestern Sub-Himalaya, because the characteristics of the different Himalayan morphotectonic provinces are well developed, the area is part of a region strongly influenced by monsoonal forcing, and the existence of numerous fluvial terraces provides excellent strain markers to assess deformation processes within the Himalayan orogenic wedge. In addition, being located in front of the Dhauladhar Range the region is characterized by pronounced gradients in past and present-day erosion and sediment processes associated with repeatedly changing climatic conditions. In light of these conditions I analysed climate-driven late Pleistocene-Holocene sediment cycles in this tectonically active region, which may be responsible for triggering the tectonic re-organization within the Himalayan orogenic wedge, leading to out-of-sequence thrusting, at least since early Holocene. The Kangra Basin is bounded by the MBT and the Sub-Himalayan Jwalamukhi Thrust (JMT) in the north and south, respectively and transiently stores sediments derived from the Dhauladhar Range. The Basin contains ~200-m-thick conglomerates reflecting two distinct aggradation phases; following aggradation, several fluvial terraces were sculpted into these fan deposits. 10Be CRN surface exposure dating of these terrace levels provides an age of 53.4±3.2 ka for the highest-preserved terrace (AF1); subsequently, this surface was incised until ~15 ka, when the second fan (AF2) began to form. AF2 fan aggradation was superseded by episodic Holocene incision, creating at least four terrace levels. We find a correlation between variations in sediment transport and ∂18O records from regions affected by the Indian Summer Monsoon (ISM). During strengthened ISMs sand post-LGM glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of a weakened ISM coupled with lower sediment supply coincided with renewed re-incision. However, the evolution of fluvial terraces along Sub-Himalayan streams in the Kangra sector is also forced by tectonic processes. Back-tilted, folded terraces clearly document tectonic activity of the JMT. Offset of one of the terrace levels indicates a shortening rate of 5.6±0.8 to 7.5±1.0 mm.a-1 over the last ~10 ka. Importantly, my study reveals that late Pleistocene/Holocene out-of-sequence thrusting accommodates 40-60\% of the total 14±2 mm.a-1 shortening partitioned throughout the Sub-Himalaya. Importantly, the JMT records shortening at a lower rate over longer timescales hints towards out-of-sequence activity within the Sub-Himalaya. Re-activation of the JMT could be related to changes in the tectonic stress field caused by large-scale sediment removal from the basin. I speculate that the deformation processes of the Sub-Himalaya behave according to the predictions of critical wedge model and assume the following: While >200m of sediment aggradation would trigger foreland-ward propagation of the deformation front, re-incision and removal of most of the stored sediments (nearly 80-85\% of the optimum basin-fill) would again create a sub-critical condition of the wedge taper and trigger the retreat of the deformation front. While tectonism is responsible for the longer-term processes of erosion associated with steepening hillslopes, sediment cycles in this environment are mainly the result of climatic forcing. My new 10Be cosmogenic nuclide exposure dates and a synopsis of previous studies show the late Pleistocene to Holocene alluvial fills and fluvial terraces studied here record periodic fluctuations of sediment supply and transport capacity on timescales of 1000-100000 years. To further evaluate the potential influence of climate change on these fluctuations, I compared the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with continental climate archives such as speleothems in neighboring regions affected by monsoonal precipitation. Together with previously published OSL ages yielding the timing of aggradation, I find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon (ISM). Accordingly, during periods of increased monsoon intensity (transitions from dry and cold to wet and warm periods - MIS4 to MIS3 and MIS2 to MIS1) (MIS=marine isotope stage) and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux. Conversely, periods of weakened monsoon intensity or lower sediment supply coincide with re-incision of the existing basin-fill. Finally, my study entails part of a low-temperature thermochronology study to assess the youngest exhumation history of the Dhauladhar Range. Zircon helium (ZHe) ages and existing low-temperature data sets (ZHe, apatite fission track (AFT)) across this range, together with 3D thermokinematic modeling (PECUBE) reveals constraints on exhumation and activity of the range-bounding Main Boundary Thrust (MBT) since at least mid-Miocene time. The modeling results indicate mean slip rates on the MBT-fault ramp of ~2 - 3 mm.a-1 since its activation. This has lead to the growth of the >5-km-high frontal Dhauladhar Range and continuous deep-seated exhumation and erosion. The obtained results also provide interesting constraints of deformation patterns and their variation along strike. The results point towards the absence of the time-transient 'mid-crustal ramp' in the basal decollement and duplexing of the Lesser Himalayan sequence, unlike the nearby regions or even the central Nepal domain. A fraction of convergence (~10-15\%) is accommodated along the deep-seated MBT-ramp, most likely merging into the MHT. This finding is crucial for a rigorous assessment of the overall level of tectonic activity in the Himalayan morphotectonic provinces as it contradicts recently-published geodetic shortening estimates. In these studies, it has been proposed that the total Himalayan shortening in the NW Himalaya is accommodated within the Sub-Himalaya whereas no tectonic activity is assigned to the MBT.}, language = {en} } @phdthesis{Olen2016, author = {Olen, Stephanie M.}, title = {Understanding Himalayan denudation at the catchment and orogen scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91423}, school = {Universit{\"a}t Potsdam}, pages = {xx, 174}, year = {2016}, abstract = {Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates. Because such measurements are averaged over timescales of 102 to 105 years, they are not as susceptible to stochastic changes as shorter-term denudation rate estimates (e.g., from suspended sediment measurements) and are therefore considered more reliable for a comparison to long-term processes that operate on geologic timescales. However, the impact of various climatic, biotic, and surface processes on 10Be concentrations and the resultant denudation rates remains unclear and is subject to ongoing discussion. In this thesis, I explore the interaction of climate, the biosphere, topography, and geology in forcing and modulating denudation rates on catchment to orogen scales. There are many processes in highly dynamic active orogens that may effect 10Be concentrations in modern river sands and therefore impact 10Be-derived denudation rates. The calculation of denudation rates from 10Be concentrations, however, requires a suite of simplifying assumptions that may not be valid or applicable in many orogens. I investigate how these processes affect 10Be concentrations in the Arun Valley of Eastern Nepal using 34 new 10Be measurements from the main stem Arun River and its tributaries. The Arun Valley is characterized by steep gradients in climate and topography, with elevations ranging from <100 m asl in the foreland basin to >8,000 asl in the high sectors to the north. This is coupled with a five-fold increase in mean annual rainfall across strike of the orogen. Denudation rates from tributary samples increase toward the core of the orogen, from <0.2 to >5 mm/yr from the Lesser to Higher Himalaya. Very high denudation rates (>2 mm/yr), however, are likely the result of 10Be TCN dilution by surface and climatic processes, such as large landsliding and glaciation, and thus may not be representative of long-term denudation rates. Mainstem Arun denudation rates increase downstream from ~0.2 mm/yr at the border with Tibet to 0.91 mm/yr at its outlet into the Sapt Kosi. However, the downstream 10Be concentrations may not be representative of the entire upstream catchment. Instead, I document evidence for downstream fining of grains from the Tibetan Plateau, resulting in an order-of-magnitude apparent decrease in the measured 10Be concentration. In the Arun Valley and across the Himalaya, topography, climate, and vegetation are strongly interrelated. The observed increase in denudation rates at the transition from the Lesser to Higher Himalaya corresponds to abrupt increases in elevation, hillslope gradient, and mean annual rainfall. Thus, across strike (N-S), it is difficult to decipher the potential impacts of climate and vegetation cover on denudation rates. To further evaluate these relationships I instead took advantage of an along-strike west-to-east increase of mean annual rainfall and vegetation density in the Himalaya. An analysis of 136 published 10Be denudation rates from along strike of the revealed that median denudation rates do not vary considerably along strike of the Himalaya, ~1500 km E-W. However, the range of denudation rates generally decreases from west to east, with more variable denudation rates in the northwestern regions of the orogen than in the eastern regions. This denudation rate variability decreases as vegetation density increases (R=- 0.90), and increases proportionately to the annual seasonality of vegetation (R=0.99). Moreover, rainfall and vegetation modulate the relationship between topographic steepness and denudation rates such that in the wet, densely vegetated regions of the Himalaya, topography responds more linearly to changes in denudation rates than in dry, sparsely vegetated regions, where the response of topographic steepness to denudation rates is highly nonlinear. Understanding the relationships between denudation rates, topography, and climate is also critical for interpreting sedimentary archives. However, there is a lack of understanding of how terrestrial organic matter is transported out of orogens and into sedimentary archives. Plant wax lipid biomarkers derived from terrestrial and marine sedimentary records are commonly used as paleo- hydrologic proxy to help elucidate these problems. I address the issue of how to interpret the biomarker record by using the plant wax isotopic composition of modern suspended and riverbank organic matter to identify and quantify organic matter source regions in the Arun Valley. Topographic and geomorphic analysis, provided by the 10Be catchment-mean denudation rates, reveals that a combination of topographic steepness (as a proxy for denudation) and vegetation density is required to capture organic matter sourcing in the Arun River. My studies highlight the importance of a rigorous and careful interpretation of denudation rates in tectonically active orogens that are furthermore characterized by strong climatic and biotic gradients. Unambiguous information about these issues is critical for correctly decoding and interpreting the possible tectonic and climatic forces that drive erosion and denudation, and the manifestation of the erosion products in sedimentary archives.}, language = {en} } @phdthesis{Grewe2016, author = {Grewe, Sina}, title = {Hydro- and biogeochemical investigations of lake sediments in the Kenyan Rift Valley}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98342}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2016}, abstract = {Die Seen im kenianischen Riftsystem bieten die einmalige Gelegenheit eine große Bandbreite an hydrochemischen Umweltbedingungen zu studieren, die von S{\"u}ßwasserseen bis hin zu hochsalinen und alkalinen Seen reichen. Da wenig {\"u}ber die hydro- und biogeochemischen Bedingungen in den darunterliegenden Seesedimenten bekannt ist, war es das Ziel dieser Arbeit, bereits existierende Datens{\"a}tze mit Daten aus der Porenwasser- und Biomarker-Analyse zu erweitern. Zus{\"a}tzlich wurden reduzierte Schwefelkomponenten und Sulfatreduktionsraten in den Sedimenten bestimmt. Mit den neu gewonnenen Daten wurde der anthropogene und mikrobielle Einfluss auf die Seesedimente untersucht sowie der Einfluss der Wasserchemie auf den Abbau und den Erhalt von organischem Material im Sediment. Zu den untersuchten Seen geh{\"o}rten: Logipi, Eight (ein kleiner Kratersee in der Region Kangirinyang), Baringo, Bogoria, Naivasha, Oloiden und Sonachi. Die Biomarker-Zusammensetzungen in den untersuchten Seesedimenten waren {\"a}hnlich; allerdings gab es einige Unterschiede zwischen den salinen Seen und den S{\"u}ßwasserseen. Einer dieser Unterschiede war das Vorkommen eines mit β-Carotin verwandten Molek{\"u}ls, das nur in den salinen Seen gefunden wurde. Dieses Molek{\"u}l stammt wahrscheinlich von Cyanobakterien, Einzellern die in großer Anzahl in salinen Seen vorkommen. In den beiden S{\"u}ßwasserseen wurde Stigmasterol gefunden, ein f{\"u}r S{\"u}ßwasseralgen charakteristisches Sterol. In dieser Studie hat sich gezeigt, dass Bogoria und Sonachi f{\"u}r Umweltrekonstruktionen mit Biomarkern besonders gut geeignet sind, da die Abwesenheit von Sauerstoff an deren Seegr{\"u}nden den Abbau von organischem Material verlangsamt. Andere Seen, wie zum Beispiel Naivasha, sind aufgrund des großen anthropogenen Einflusses weniger gut f{\"u}r solche Rekonstruktionen geeignet. Die Biomarker-Analyse bot jedoch die M{\"o}glichkeit, den menschlichen Einfluss auf den See zu studieren. Desweiteren zeigte diese Studie, dass sich Horizonte mit einem hohen Anteil an elementarem Schwefel als temporale Marker nutzen lassen. Diese Horizonte wurden zu einer Zeit abgelagert, als die Wasserpegel sehr niedrig waren. Der Schwefel wurde von Mikroorganismen abgelagert, die zu anoxygener Photosynthese oder Sulfidoxidation f{\"a}hig sind.}, language = {en} } @phdthesis{Bierkandt2016, author = {Bierkandt, Robert}, title = {Pressure from future sea-level rise on coastal power plants: near-term extremes and long-term commitment}, school = {Universit{\"a}t Potsdam}, pages = {187}, year = {2016}, language = {en} }