@unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26386}, year = {2002}, abstract = {When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.}, language = {en} } @unpublished{ManicciaSchulze2002, author = {Maniccia, L. and Schulze, Bert-Wolfgang}, title = {An algebra of meromorphic corner symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26360}, year = {2002}, abstract = {Operators on manifolds with corners that have base configurations with geometric singularities can be analysed in the frame of a conormal symbolic structure which is in spirit similar to the one for conical singularities of Kondrat'ev's work. Solvability of elliptic equations and asymptotics of solutions are determined by meromorphic conormal symbols. We study the case when the base has edge singularities which is a natural assumption in a number of applications. There are new phenomena, caused by a specific kind of higher degeneracy of the underlying symbols. We introduce an algebra of meromorphic edge operators that depend on complex parameters and investigate meromorphic inverses in the parameter-dependent elliptic case. Among the examples are resolvents of elliptic differential operators on manifolds with edges.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : II. Products in elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26335}, year = {2002}, abstract = {Exterior tensor products of elliptic operators on smooth manifolds and manifolds with conical singularities are used to obtain examples of elliptic operators on manifolds with edges that do not admit well-posed edge boundary and coboundary conditions.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : I. The index of families of cone-degenerate operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26327}, year = {2002}, abstract = {We study the index problem for families of elliptic operators on manifolds with conical singularities. The relative index theorem concerning changes of the weight line is obtained. AN index theorem for families whose conormal symbols satisfy some symmetry conditions is derived.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2002, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Surgery and the relative index theorem for families of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26300}, year = {2002}, abstract = {We prove a theorem describing the behaviour of the relative index of families of Fredholm operators under surgery performed on spaces where the operators act. In connection with additional conditions (like symmetry conditions) this theorem results in index formulas for given operator families. By way of an example, we give an application to index theory of families of boundary value problems.}, language = {en} } @unpublished{SchulzeSeiler2002, author = {Schulze, Bert-Wolfgang and Seiler, J{\"o}rg}, title = {Pseudodifferential boundary value problems with global projection conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26233}, year = {2002}, abstract = {Contents: Introduction 1 Operators with the transmission property 1.1 Operators on a manifold with boundary 1.2 Conditions with pseudodifferential projections 1.3 Projections and Fredholm families 2 Boundary value problems not requiring the transmission property 2.1 Interior operators 2.2 Edge amplitude functions 2.3 Boundary value problems 3 Operators with global projection conditions 3.1 Construction for boundary symbols 3.2 Ellipticity of boundary value problems with projection data 3.3 Operators of order zero}, language = {en} } @unpublished{HarutjunjanSchulze2002, author = {Harutjunjan, G. and Schulze, Bert-Wolfgang}, title = {Reduction of orders in boundary value problems without the transmission property}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26220}, year = {2002}, abstract = {Given an algebra of pseudo-differential operators on a manifold, an elliptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev spaces with a corresponding shift of smoothness. Reductions of orders on a manifold with boundary refer to boundary value problems. We consider smooth symbols and ellipticity without additional boundary conditions which is the relevant case on a manifold with boundary. Starting from a class of symbols that has been investigated before for integer orders in boundary value problems with the transmission property we study operators of arbitrary real orders that play a similar role for operators without the transmission property. Moreover, we show that order reducing symbols have the Volterra property and are parabolic of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We finally investigate parameter-dependent operators, apply a kernel cut-off construction with respect to the parameter and show that corresponding holomorphic operator-valued Mellin symbols reduce orders in weighted Sobolev spaces on a cone with boundary.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2001, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Localization problem in index theory of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26175}, year = {2001}, abstract = {This is a survey of recent results concerning the general index locality principle, associated surgery, and their applications to elliptic operators on smooth manifolds and manifolds with singularities as well as boundary value problems. The full version of the paper is submitted for publication in Russian Mathematical Surveys.}, language = {en} } @unpublished{KapanadzeSchulze2001, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Symbolic calculus for boundary value problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26046}, year = {2001}, abstract = {Boundary value problems for (pseudo-) differential operators on a manifold with edges can be characterised by a hierarchy of symbols. The symbol structure is responsible or ellipicity and for the nature of parametrices within an algebra of "edge-degenerate" pseudo-differential operators. The edge symbol component of that hierarchy takes values in boundary value problems on an infinite model cone, with edge variables and covariables as parameters. Edge symbols play a crucial role in this theory, in particular, the contribution with holomorphic operatot-valued Mellin symbols. We establish a calculus in s framework of "twisted homogenity" that refers to strongly continuous groups of isomorphisms on weighted cone Sobolev spaces. We then derive an equivalent representation with a particularly transparent composition behaviour.}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 3: Chapter 6+7]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26000}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 2: Chapter 3-5]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25992}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 1: Chapter 1+2]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25987}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KytmanovMyslivetsSchulzeetal.2001, author = {Kytmanov, Aleksandr and Myslivets, Simona and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic problems for the Dolbeault complex}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25979}, year = {2001}, abstract = {The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).}, language = {en} } @unpublished{SchulzeSeiler2001, author = {Schulze, Bert-Wolfgang and Seiler, J{\"o}rg}, title = {The edge algebra structure of boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25955}, year = {2001}, abstract = {Boundary value problems for pseudodifferential operators (with or without the transmission property) are characterised as a substructure of the edge pseudodifferential calculus with constant discrete asymptotics. The boundary in this case is the edge and the inner normal the model cone of local wedges. Elliptic boundary value problems for non-integer powers of the Laplace symbol belong to the examples as well as problems for the identity in the interior with a prescribed number of trace and potential conditions. Transmission operators are characterised as smoothing Mellin and Green operators with meromorphic symbols.}, language = {en} } @unpublished{Schulze2001, author = {Schulze, Bert-Wolfgang}, title = {Operators with symbol hierarchies and iterated asymptotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25948}, year = {2001}, abstract = {Contents: Introduction 1 Edge calculus with parameters 1.1 Cone asymptotics and Green symbols 1.2 Mellin edge symbols 1.3 The edge symbol algebra 1.4 Operators on a manifold with edges 2 Corner symbols and iterated asymptotics 2.1 Holomorphic corner symbols 2.2 Meromorphic corner symbols and ellipicity 2.3 Weighted corner Sobolev spaces 2.4 Iterated asymptotics 3 The edge corner algebra with trace and potential conditions 3.1 Green corner operators 3.2 Smoothing Mellin corner operators 3.3 The edge corner algebra 3.4 Ellipicity and regularity with asymptotics 3.5 Examples and remarks}, language = {en} } @unpublished{EgorovKondratievSchulze2001, author = {Egorov, Yu. and Kondratiev, V. and Schulze, Bert-Wolfgang}, title = {On completeness of eigenfunctions of an elliptic operator on a manifold with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25937}, year = {2001}, abstract = {Contents: 1 Introduction 2 Definitions 3 Rays of minimal growth 4 Completeness of root functions}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 11: Noncommutative analysis and high-frequency asymptotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25857}, year = {2000}, abstract = {Content: Chapter 11: Noncommutative Analysis and High-Frequency Asymptotics 11.1 Statement of the Problem 11.2 Mixed Asymptotics: the General Scheme 11.3 The Asymptotic Solution of Main Problem 11.4 Analysis of the Asymptotic Solution}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov2000, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {C*-algebras of ISO's with oscillating symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25847}, year = {2000}, abstract = {For a domain D subset of IRn with singular points on the boundary and a weight function ω infinitely differentiable away from the singularpoints in D, we consider a C*-algebra G (D; ω) of operators acting in the weighted space L² (D, ω). It is generated by the operators XD F-¹ σ F XD where σ is a homogeneous function. We show that the techniques of limit operators apply to define a symbol algebra for G (D; ω). When combined with the local principle, this leads to describing the Fredholm operators in G (D; ω).}, language = {en} } @unpublished{KrainerSchulze2000, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {Long-time asymptotics with geometric singularities in the spatial variables}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25824}, year = {2000}, abstract = {Content: Introduction 1 Anisotropic operators in a cylinder with a conical base 1.1 Manifolds with conical singularities and opertors of Fuchs type 1.2 Typical operators and symbol structures 2 Weighted wedge Sobolev spaces and edge asymptotics 2.1 Discrete edge asymptotics 2.2 Continuos edge asymptotics with discrete limit at infinity 2.3 Calculus with operator valued symbols 3 Corner asymptotics at infinity 3.1 The structure of singular functions 3.2 Operators with trace and potential conditions 3.3 Asymptotics and (anisotropic) elliptic regularity}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 3: Applications of noncommutative analysis to operator algebras on singular manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25801}, year = {2000}, abstract = {Content: Chapter 3: Applications of Noncommutative Analysis to Operator Algebras on Singular Manifolds 3.1 Statement of the problem 3.2 Operators on the Model Cone 3.3 Operators on the Model Cusp of Order k 3.4 An Application to the Construction of Regularizers and Proof of the Finiteness Theorem}, language = {en} }