@article{PanYanLaubrocketal.2014, author = {Pan, Jinger and Yan, Ming and Laubrock, Jochen and Shu, Hua and Kliegl, Reinhold}, title = {Saccade-target selection of dyslexic children when reading Chinese}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {97}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2014.01.014}, pages = {24 -- 30}, year = {2014}, abstract = {This study investigates the eye movements of dyslexic children and their age-matched controls when reading Chinese. Dyslexic children exhibited more and longer fixations than age-matched control children, and an increase of word length resulted in a greater increase in the number of fixations and gaze durations for the dyslexic than for the control readers. The report focuses on the finding that there was a significant difference between the two groups in the fixation landing position as a function of word length in single-fixation cases, while there was no such difference in the initial fixation of multi-fixation cases. We also found that both groups had longer incoming saccade amplitudes while the launch sites were closer to the word in single fixation cases than in multi-fixation cases. Our results suggest that dyslexic children's inefficient lexical processing, in combination with the absence of orthographic word boundaries in Chinese, leads them to select saccade targets at the beginning of words conservatively. These findings provide further evidence for parafoveal word segmentation during reading of Chinese sentences.}, language = {en} } @article{YanZhouShuetal.2014, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Yusupu, Rizwangul and Miao, Dongxia and Kruegel, Andre and Kliegl, Reinhold}, title = {Eye movements guided by morphological structure: Evidence from the Uighur language}, series = {Cognition : international journal of cognitive science}, volume = {132}, journal = {Cognition : international journal of cognitive science}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2014.03.008}, pages = {181 -- 215}, year = {2014}, abstract = {It is generally accepted that low-level features (e.g., inter-word spaces) are responsible for saccade-target selection in eye-movement control during reading. In two experiments using Uighur script known for its rich suffixes, we demonstrate that, in addition to word length and launch site, the number of suffixes influences initial landing positions. We also demonstrate an influence of word frequency. These results are difficult to explain purely by low-level guidance of eye movements and indicate that due to properties specific to Uighur script low-level visual information and high-level information such as morphological structure of parafoveal words jointly influence saccade programming. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{TrukenbrodEngbert2014, author = {Trukenbrod, Hans Arne and Engbert, Ralf}, title = {ICAT: a computational model for the adaptive control of fixation durations}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {21}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-013-0575-0}, pages = {907 -- 934}, year = {2014}, abstract = {Eye movements depend on cognitive processes related to visual information processing. Much has been learned about the spatial selection of fixation locations, while the principles governing the temporal control (fixation durations) are less clear. Here, we review current theories for the control of fixation durations in tasks like visual search, scanning, scene perception, and reading and propose a new model for the control of fixation durations. We distinguish two local principles from one global principle of control. First, an autonomous saccade timer initiates saccades after random time intervals (local-I). Second, foveal inhibition permits immediate prolongation of fixation durations by ongoing processing (local-II). Third, saccade timing is adaptive, so that the mean timer value depends on task requirements and fixation history (Global). We demonstrate by numerical simulations that our model qualitatively reproduces patterns of mean fixation durations and fixation duration distributions observed in typical experiments. When combined with assumptions of saccade target selection and oculomotor control, the model accounts for both temporal and spatial aspects of eye movement control in two versions of a visual search task. We conclude that the model provides a promising framework for the control of fixation durations in saccadic tasks.}, language = {en} } @article{HartmannMartarelliMastetal.2014, author = {Hartmann, Matthias and Martarelli, Corinna S. and Mast, Fred W. and Stocker, Kurt}, title = {Eye movements during mental time travel follow a diagonal line}, series = {Consciousness and cognition}, volume = {30}, journal = {Consciousness and cognition}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8100}, doi = {10.1016/j.concog.2014.09.007}, pages = {201 -- 209}, year = {2014}, abstract = {Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, \& Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. (C) 2014 Elsevier Inc. All rights reserved.}, language = {en} }