@article{VicenteBarrosMessicketal.2021, author = {Vicente, Luis and Barros, Matthew and Messick, Troy and Saab, Andres}, title = {On a nonargument for cleft sources in sluicing}, series = {Linguistic inquiry}, volume = {52}, journal = {Linguistic inquiry}, number = {4}, publisher = {MIT Press}, address = {Cambridge}, issn = {0024-3892}, doi = {10.1162/ling_a_00390}, pages = {867 -- 880}, year = {2021}, abstract = {On the basis of certain semantic intuitions, Barros (2012) argues that ellipsis does not require structural isomorphism between elided structure and its antecedent. We tackle this claim. Semantic intuitions cannot be a pointer to the analysis of silent structure. We provide empirical evidence that raises the question of to what extent semantic intuitions about plausible articulable syntax must inform one's analysis of silent structure. We conclude that the answer to this question must be crosslinguistically informed. We conjecture that ellipsis introduces ellipsis-specific interpretive mechanisms, so that intuitions about "how the unelided structure would be interpreted" are not empirically relevant.}, language = {en} } @article{DuttaJonssonVasyuraBathke2021, author = {Dutta, Rishabh and J{\´o}nsson, Sigurj{\´o}n and Vasyura-Bathke, Hannes}, title = {Simultaneous Bayesian estimation of non-planar fault geometry and spatially-variable slip}, series = {JGR / AGU, American Geophysical Union : Solid earth}, volume = {126}, journal = {JGR / AGU, American Geophysical Union : Solid earth}, number = {7}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9313}, doi = {10.1029/2020JB020441}, pages = {28}, year = {2021}, abstract = {Large earthquakes are usually modeled with simple planar fault surfaces or a combination of several planar fault segments. However, in general, earthquakes occur on faults that are non-planar and exhibit significant geometrical variations in both the along-strike and down-dip directions at all spatial scales. Mapping of surface fault ruptures and high-resolution geodetic observations are increasingly revealing complex fault geometries near the surface and accurate locations of aftershocks often indicate geometrical complexities at depth. With better geodetic data and observations of fault ruptures, more details of complex fault geometries can be estimated resulting in more realistic fault models of large earthquakes. To address this topic, we here parametrize non-planar fault geometries with a set of polynomial parameters that allow for both along-strike and down-dip variations in the fault geometry. Our methodology uses Bayesian inference to estimate the non-planar fault parameters from geodetic data, yielding an ensemble of plausible models that characterize the uncertainties of the non-planar fault geometry and the fault slip. The method is demonstrated using synthetic tests considering slip spatially distributed on a single continuous finite non-planar fault surface with varying dip and strike angles both in the down-dip and along-strike directions. The results show that fault-slip estimations can be biased when a simple planar fault geometry is assumed in presence of significant non-planar geometrical variations. Our method can help to model earthquake fault sources in a more realistic way and may be extended to include multiple non-planar fault segments or other geometrical fault complexities.}, language = {en} } @phdthesis{Leiser2021, author = {Leiser, Rico}, title = {Biogeochemical processes governing microplastic transport in freshwater reservoirs}, doi = {10.25932/publishup-52024}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520240}, school = {Universit{\"a}t Potsdam}, pages = {ix, 143}, year = {2021}, abstract = {The presented study investigated the influence of microbial and biogeochemical processes on the physical transport related properties and the fate of microplastics in freshwater reservoirs. The overarching goal was to elucidate the mechanisms leading to sedimentation and deposition of microplastics in such environments. This is of importance, as large amounts of initially buoyant microplastics are found in reservoir sediments worldwide. However, the transport processes which lead to microplastics accumulation in sediments, were up to now understudied. The impact of biofilm formation on the density and subsequent sedimentation of microplastics was investigated in the eutrophic Bautzen reservoirs (Chapter 2). Biofilms are complex microbial communities fixed to submerged surfaces through a slimy organic film. The mineral calcite was detected in the biofilms, which led to the sinking of the overgrown microplastic particles. The calcite was of biogenic origin, most likely precipitated by sessile cyanobacteria within the biofilms. Biofilm formation was also studied in the mesotrophic Malter reservoir. Unlike in Bautzen reservoir, biofilm formation did not govern the sedimentation of different microplastics in Malter reservoir (Chapter 3). Instead autumnal lake mixing led to the formation of sinking aggregates of microplastics and iron colloids. Such colloids form when anoxic, iron-rich water from the hypolimnion mixes with the oxygenated epilimnetic waters. The colloids bind organic material from the lake water, which leads to the formation of large and sinking iron-organo flocs. Hence, iron-organo floc formation and their influence on the buoyancy or burial of microplastics into sediments of Bautzen reservoir was studied in laboratory experiments (Chapter 4). Microplastics of different shapes (fiber, fragment, sphere) and sizes were readily incorporated into sinking iron-organo flocs. By this initially buoyant polyethylene microplastics were transported on top of sediments from Bautzen reservoir. Shortly after deposition, the microplastic bearing flocs started to subside and transported the pollutants into deeper sediment layers. The microplastics were not released from the sediments within two months of laboratory incubation. The stability of floc microplastic deposition was further investigated employing experiments with the iron reducing model organism Shewanella oneidensis (Chapter 5). It was shown, that reduction or re-mineralization of the iron minerals did not affect the integrity of the iron-organo flocs. The organic matrix was stable under iron reducing conditions. Hence, no incorporated microplastics were released from the flocs. As similar processes are likely to take place in natural sediments, this might explain the previous described low microplastic release from the sediments. This thesis introduced different mechanisms leading to the sedimentation of initially buoyant microplastics and to their subsequent deposition in freshwater reservoirs. Novel processes such as the aggregation with iron-organo flocs were identified and the understudied issue of biofilm densification through biogenic mineral formation was further investigated. The findings might have implications for the fate of microplastics within the river-reservoir system and outline the role of freshwater reservoirs as important accumulation zone for microplastics. Microplastics deposited in the sediments of reservoirs might not be transported further by through flowing river. Hence the study might contribute to better risk assessment and transport balances of these anthropogenic contaminants.}, language = {en} } @phdthesis{Barchewitz2021, author = {Barchewitz, Tino}, title = {Impact of microcystin on the non-canonical localization of RubisCO in the toxic bloom-forming cyanobacterium Microcystis aeruginosa PCC7806}, doi = {10.25932/publishup-50829}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508299}, school = {Universit{\"a}t Potsdam}, pages = {vii, 106}, year = {2021}, abstract = {Cyanobacteria are an abundant bacterial group and are found in a variety of ecological niches all around the globe. They can serve as a real threat for fish or mammals and can restrict the use of lakes or rivers for recreational purposes or as a source of drinking water, when they form blooms. One of the most abundant bloom-forming cyanobacteria is Microcystis aeruginosa. In the first part of the study, the role and possible dynamics of RubisCO in M. aeruginosa during high-light irradiation were examined. Its response was analyzed on the protein and peptide level via immunoblotting, immunofluorescence microscopy and with high performance liquid chromatography (HPLC). It was revealed that large amounts of RubisCO were located outside of carboxysomes under the applied high light stress. RubisCO aggregated mainly underneath the cytoplasmic membrane. There it forms a putative Calvin-Benson-Bassham (CBB) super complex together with other enzymes of photosynthesis. This complex could be part of an alternative carbon-concentrating mechanism (CCM) in M. aeruginosa, which enables a faster, and energy saving adaptation to high light stress of the whole bloom. Furthermore, the re-localization of RubisCO was delayed in the microcystin-deficient mutant ΔmcyB and RubisCO was more evenly distributed over the cell in comparison to the wild type. Since ΔmcyB is not harmed in its growth, possibly other produced cyanopeptides as aeruginosin or cyanopeptolin also play a role in the stabilization of RubisCO and the putative CBB complex, especially in the microcystin-free mutant. In the second part of this work, the possible role of microcystin as an extracellular signaling peptide during the diurnal cycle was studied. HPLC analysis showed a strong increase of extracellular microcystin in the wild type when the population entered nighttime and it resumed into the next day as well. Together with the increase of extracellular microcystin, a strong decrease of protein-bound intracellular microcystin was observed via immunoblot analysis. Interestingly, the signal of the large subunit of RubisCO (RbcL) also diminished when high amounts of microcystin were present in the surrounding medium. Microcystin addition experiments to M. aeruginosa WT and ΔmcyB cultures support this observation, since the immunoblot signal of both subunits of RubisCO and CcmK, a shell protein of carboxysomes, diminished after the addition of microcystin. In addition, the fluctuation of cyanopeptolin during the diurnal cycle indicates a more prominent role of other cyanopeptides besides microcystin as a signaling peptide, intracellularly as well as extracellularly.}, language = {en} } @misc{PerkinsRoseGrossartetal.2021, author = {Perkins, Anita and Rose, Andrew and Grossart, Hans-Peter and Rojas-Jimenez, Keilor Osvaldo and Barroso Prescott, Selva Kiri and Oakes, Joanne M.}, title = {Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550520}, pages = {1 -- 13}, year = {2021}, abstract = {Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.}, language = {en} } @article{KutzschbachWunderWannhoffetal.2021, author = {Kutzschbach, Martin and Wunder, Bernd and Wannhoff, Iris and Wilke, Franziska Daniela Helena and Couffignal, Fr{\´e}d{\´e}ric and Rocholl, Alexander}, title = {Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {106}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {6}, publisher = {Mineralogical Society of America}, address = {Washington, DC [u.a.]}, issn = {0003-004X}, doi = {10.2138/am-2021-7758}, pages = {872 -- 882}, year = {2021}, abstract = {The Raman spectra of five B-[4]-bearing tourmalines of different composition synthesized at 700 degrees C/4.0 GPa (including first-time synthesis of Na-Li-B-[4]-tourmaline, Ca-Li-B-[4]-tourmaline, and Ca-bearing square-B-[4]-tourmaline) reveal a strong correlation between the tetrahedral boron content and the summed relative intensity of all OH-stretching bands between 3300-3430 cm(-1). The band shift to low wavenumbers is explained by strong O3-H center dot center dot center dot O5 hydrogen bridge bonding. Applying the regression equation to natural B-[4]-bearing tourmaline from the Koralpe (Austria) reproduces the EMPA-derived value perfectly [EMPA: 0.67(12) B-[4] pfu vs. Raman: 0.66(13) B-[4] pfu]. This demonstrates that Raman spectroscopy provides a fast and easy-to-use tool for the quantification of tetrahedral boron in tourmaline. The knowledge of the amount of tetrahedral boron in tourmaline has important implications for the better understanding and modeling of B-isotope fractionation between tourmaline and fluid/melt, widely used as a tracer of mass transfer processes.}, language = {en} } @misc{ZurellKoenigMalchowetal.2021, author = {Zurell, Damaris and K{\"o}nig, Christian and Malchow, Anne-Kathleen and Kapitza, Simon and Bocedi, Greta and Travis, Justin M. J. and Fandos, Guillermo}, title = {Spatially explicit models for decision-making in animal conservation and restoration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {2022}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549915}, pages = {1 -- 16}, year = {2021}, abstract = {Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79\%), towards the species and population level (80\%) and towards conservation (rather than restoration) applications (71\%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10\% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes.}, language = {en} } @misc{FischerWinterFelisattietal.2021, author = {Fischer, Martin H. and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More Instructions Make Fewer Subtractions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550086}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @article{FischerWinterFelisattietal.2021, author = {Fischer, Martin H. and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More instructions make fewer subtractions}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.720616}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @article{BelliFelisattiFischer2021, author = {Belli, Francesco and Felisatti, Arianna and Fischer, Martin H.}, title = {"BreaThink"}, series = {Experimental brain research}, volume = {239}, journal = {Experimental brain research}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-021-06147-z}, pages = {2489 -- 2499}, year = {2021}, abstract = {Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states.}, language = {en} }