@article{ZaldenQuirinSchumacheretal.2019, author = {Zalden, Peter and Quirin, Florian and Schumacher, Mathias and Siegel, Jan and Wei, Shuai and Koc, Azize and Nicoul, Matthieu and Trigo, Mariano and Andreasson, Pererik and Enquist, Henrik and Shu, Michael J. and Pardini, Tommaso and Chollet, Matthieu and Zhu, Diling and Lemke, Henrik and Ronneberger, Ider and Larsson, J{\"o}rgen and Lindenberg, Aaron M. and Fischer, Henry E. and Hau-Riege, Stefan and Reis, David A. and Mazzarello, Riccardo and Wuttig, Matthias and Sokolowski-Tinten, Klaus}, title = {Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington, DC}, issn = {0036-8075}, doi = {10.1126/science.aaw1773}, pages = {1062 -- 1067}, year = {2019}, abstract = {In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.}, language = {en} } @article{GoettgensWeilbacherRothetal.2019, author = {G{\"o}ttgens, Fabian and Weilbacher, Peter Michael and Roth, Martin M. and Dreizler, Stefan and Giesers, Benjamin and Husser, Tim-Oliver and Kamann, Sebastian and Brinchmann, Jarle and Kollatschny, Wolfram and Monreal-Ibero, Ana and Schmidt, Kasper Borello and Wendt, Martin and Wisotzki, Lutz and Bacon, Roland}, title = {Discovery of an old nova remnant in the Galactic globular cluster M 22}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {626}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935221}, pages = {6}, year = {2019}, abstract = {A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history.}, language = {en} } @article{VazdaCruzIgnatovaCoutoetal.2019, author = {Vaz da Cruz, Vin{\´i}cius and Ignatova, Nina and Couto, Rafael and Fedotov, Daniil and Rehn, Dirk R. and Savchenko, Viktoriia and Norman, Patrick and {\AA}gren, Hans and Polyutov, Sergey and Niskanen, Johannes and Eckert, Sebastian and Jay, Raphael Martin and Fondell, Mattis and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor and Gel'mukhanov, Faris}, title = {Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5092174}, pages = {20}, year = {2019}, abstract = {We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s).}, language = {en} } @article{DeckerBornBuechneretal.2019, author = {Decker, R{\´e}gis and Born, Artur and B{\"u}chner, Robby and Ruotsalainen, Kari and Str{\aa}hlman, Christian and Neppl, Stefan and Haverkamp, Robert and Pietzsch, Annette and F{\"o}hlisch, Alexander}, title = {Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-45242-8}, pages = {6}, year = {2019}, abstract = {While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d -> 2p(3/2) decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method.}, language = {en} } @article{LevermannFeldmann2019, author = {Levermann, Anders and Feldmann, Johannes}, title = {Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-13-1621-2019}, pages = {1621 -- 1633}, year = {2019}, abstract = {Recent observations and ice-dynamic modeling suggest that a marine ice-sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last 2 decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability, it is so far unclear how fast these instabilities would unfold if they were initiated. Here we employ the concept of similitude to estimate the characteristic timescales of several potentially MISI-prone outlet glaciers around the Antarctic coast. Our results suggest that TG and PIG have the fastest response time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to 10 times slower if destabilized. These results have to be viewed in light of the strong assumptions made in their derivation. These include the absence of ice-shelf buttressing, the one-dimensionality of the approach and the uncertainty of the available data. We argue however that the current topographic situation and the physical conditions of the MISI-prone outlet glaciers carry the information of their respective timescale and that this information can be partially extracted through a similitude analysis.}, language = {en} } @article{ZuWolffRalaiarisoaetal.2019, author = {Zu, Fengshuo and Wolff, Christian Michael and Ralaiarisoa, Maryline and Amsalem, Patrick and Neher, Dieter and Koch, Norbert}, title = {Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b05293}, pages = {21578 -- 21583}, year = {2019}, abstract = {The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites' photophysical properties.}, language = {en} } @article{WuerfelPerdigonToroKurpiersetal.2019, author = {W{\"u}rfel, Uli and Perdig{\´o}n-Toro, Lorena and Kurpiers, Jona and Wolff, Christian Michael and Caprioglio, Pietro and Rech, Jeromy James and Zhu, Jingshuai and Zhan, Xiaowei and You, Wei and Shoaee, Safa and Neher, Dieter and Stolterfoht, Martin}, title = {Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01175}, pages = {3473 -- 3480}, year = {2019}, abstract = {Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit.}, language = {en} } @article{BoumaRichterFechner2019, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Fechner, Cora}, title = {A population of high-velocity absorption-line systems residing in the Local Group}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935078}, pages = {12}, year = {2019}, abstract = {Aims. We investigated the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with the Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions such as Si ii, C ii, Si iii, Si vi, and C iv, and use these data to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The components in the direction of the LG barycentre span the entire range of studied velocities, 100 less than or similar to vertical bar nu(LSR)vertical bar less than or similar to 400 km s(-1), while those in the anti-barycentre sample have velocities up to about 300 km s(-1). For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a wide range from log nH = -3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log nH > -3.25. The barycentre absorbers can be split into two groups based on their density: a high-density group with log nH > -3.54, which can be affected by the Milky Way radiation field, and a low-density group (log nH <= -3.54). The latter has very low thermal pressures of P/k < 7.3 Kcm(-3). Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. These properties indicate that the absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre.}, language = {en} } @misc{ElNagarLauermannSarhanetal.2019, author = {El-Nagar, Gumaa A. and Lauermann, Iver and Sarhan, Radwan Mohamed and Roth, Christina}, title = {Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction (vol 10, pg 7304 -7310, 2018)}, series = {Nanoscale}, volume = {11}, journal = {Nanoscale}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c9nr90131k}, pages = {11975 -- 11975}, year = {2019}, language = {en} } @article{OskinovaBikMasHesseetal.2019, author = {Oskinova, Lidia M. and Bik, A. and Mas-Hesse, J. M. and Hayes, M. and Adamo, A. and {\"O}stlin, G{\"o}ran and F{\"u}rst, F. and Ot{\´i}-Floranes, H.}, title = {ULX contribution to stellar feedback}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935414}, pages = {7}, year = {2019}, abstract = {Context. X-ray radiation from accreting compact objects is an important part of stellar feedback. The metal-poor galaxy ESO 338-4 has experienced vigorous starburst during the last <40 Myr and contains some of the most massive super star clusters in the nearby Universe. Given its starburst age and its star-formation rate, ESO 338-4 is one of the most efficient nearby manufactures of neutron stars and black holes, hence providing an excellent laboratory for feedback studies. Aims. We aim to use X-ray observations with the largest modern X-ray telescopes XMM-Newton and Chandra to unveil the most luminous accreting neutron stars and black holes in ESO 338-4. Methods. We compared X-ray images and spectra with integral field spectroscopic observations in the optical to constrain the nature of strong X-ray emitters. Results. X-ray observations uncover three ultraluminous X-ray sources (ULXs) in ESO 338-4. The brightest among them, ESO 338 X-1, has X-ray luminosity in excess of 10(40) erg s(-1). We speculate that ESO 338-4 X-1 is powered by accretion on an intermediate-mass (greater than or similar to 300 M-circle dot)black hole. We show that X-ray radiation from ULXs and hot superbubbles strongly contributes to He II ionization and general stellar feedback in this template starburst galaxy.}, language = {en} } @article{TosiCapaccioniCapriaetal.2019, author = {Tosi, Federico and Capaccioni, F. and Capria, M. T. and Mottola, Stefano and Zinzi, A. and Ciarniello, M. and Filacchione, G. and Hofstadter, M. and Fonti, S. and Formisano, M. and Kappel, David and K{\"u}hrt, E. and Leyrat, C. and Vincent, J-B and Arnold, G. and De Sanctis, M. C. and Longobardo, Andrea and Palomba, E. and Raponi, A. and Rousseau, Batiste and Schmitt, Bernard and Barucci, Maria Antonietta and Bellucci, Giancarlo and Benkhoff, Johannes and Bockelee-Morvan, D. and Cerroni, P. and Combe, J-Ph and Despan, D. and Erard, St{\´e}phane and Mancarella, F. and McCord, T. B. and Migliorini, Alessandra and Orofino, V and Piccioni, G.}, title = {The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0740-0}, pages = {649 -- 658}, year = {2019}, abstract = {Knowledge of the surface temperature distribution on a comet's nucleus and its temporal evolution at different timescales is key to constraining its thermophysical properties and understanding the physical processes that take place at and below the surface. Here we report on time-resolved maps of comet 67P/Churyumov-Gerasimenko retrieved on the basis of infrared data acquired by the Visible InfraRed and Thermal Imaging Spectrometer (VIRTIS) onboard the Rosetta orbiter in 2014, over a roughly two-month period in the pre-perihelion phase at heliocentric distances between 3.62 and 3.31 au from the Sun. We find that at a spatial resolution ≤15 m per pixel, the measured temperatures point out the major effect that self-heating, due to the complex shape of the nucleus, has on the diurnal temperature variation. The bilobate nucleus of comet 67P also induces daytime shadowing effects, which result in large thermal gradients. Over longer periods, VIRTIS-derived temperature values reveal seasonal changes driven by decreasing heliocentric distance combined with an increasing abundance of ice within the uppermost centimetre-thick layer, which implies the possibility of having a largely pristine nucleus interior already in the shallow subsurface}, language = {en} } @article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Kraus, M. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lorentz, M. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830-211}, series = {Monthly notices of the Royal Astronomical Society}, volume = {486}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stz1031}, pages = {3886 -- 3891}, year = {2019}, abstract = {PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.}, language = {en} } @article{ZaksPikovskij2019, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {92}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2019-100152-2}, pages = {12}, year = {2019}, abstract = {We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.}, language = {en} } @article{WangMosconiWolffetal.2019, author = {Wang, Qiong and Mosconi, Edoardo and Wolff, Christian Michael and Li, Junming and Neher, Dieter and De Angelis, Filippo and Suranna, Gian Paolo and Grisorio, Roberto and Abate, Antonio}, title = {Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells}, series = {dvanced energy materials}, volume = {9}, journal = {dvanced energy materials}, number = {28}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201900990}, pages = {9}, year = {2019}, abstract = {Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6\%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.}, language = {en} } @article{FeldmannLevermannMengel2019, author = {Feldmann, Johannes and Levermann, Anders and Mengel, Matthias}, title = {Stabilizing the West Antarctic Ice Sheet by surface mass deposition}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {7}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aaw4132}, pages = {7}, year = {2019}, abstract = {There is evidence that a self-sustaining ice discharge from the West Antarctic Ice Sheet (WAIS) has started, potentially leading to its disintegration. The associated sea level rise of more than 3m would pose a serious challenge to highly populated areas including metropolises such as Calcutta, Shanghai, New York City, and Tokyo. Here, we show that the WAIS may be stabilized through mass deposition in coastal regions around Pine Island and Thwaites glaciers. In our numerical simulations, a minimum of 7400 Gt of additional snowfall stabilizes the flow if applied over a short period of 10 years onto the region (-2 mm year(-1) sea level equivalent). Mass deposition at a lower rate increases the intervention time and the required total amount of snow. We find that the precise conditions of such an operation are crucial, and potential benefits need to be weighed against environmental hazards, future risks, and enormous technical challenges.}, language = {en} } @article{BetkeLokstein2019, author = {Betke, Alexander and Lokstein, Heiko}, title = {Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments}, series = {Faraday discussions}, volume = {216}, journal = {Faraday discussions}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-6640}, doi = {10.1039/c8fd00198g}, pages = {494 -- 506}, year = {2019}, abstract = {In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S-0, 1(1)A(g)(-)) and the lowest excited singlet state (S-1, 2(1)A(g)(-)) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 1(1)A(g)(-) -> 2(1)A(g)(-) (S-0 -> S-1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2019, author = {Rodriguez-Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and L{\"u}hr, H. and Park, J. and Scherliess, L. and Chau, J. L.}, title = {On the balance between plasma and magnetic pressure across equatorial plasma depletions}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9402}, doi = {10.1029/2019JA026700}, pages = {5936 -- 5944}, year = {2019}, abstract = {In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low-latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large-scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high-pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere.}, language = {en} } @article{DentonOfmanShpritsetal.2019, author = {Denton, Richard E. and Ofman, L. and Shprits, Yuri and Bortnik, J. and Millan, R. M. and Rodger, C. J. and da Silva, C. L. and Rogers, B. N. and Hudson, M. K. and Liu, K. and Min, K. and Glocer, A. and Komar, C.}, title = {Pitch Angle Scattering of Sub-MeV Relativistic Electrons by Electromagnetic Ion Cyclotron Waves}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9402}, doi = {10.1029/2018JA026384}, pages = {5610 -- 5626}, year = {2019}, abstract = {Electromagnetic ion cyclotron (EMIC) waves have long been considered to be a significant loss mechanism for relativistic electrons. This has most often been attributed to resonant interactions with the highest amplitude waves. But recent observations have suggested that the dominant energy of electrons precipitated to the atmosphere may often be relatively low, less than 1 MeV, whereas the minimum resonant energy of the highest amplitude waves is often greater than 2 MeV. Here we use relativistic electron test particle simulations in the wavefields of a hybrid code simulation of EMIC waves in dipole geometry in order to show that significant pitch angle scattering can occur due to interaction with low-amplitude short-wavelength EMIC waves. In the case we examined, these waves are in the H band (at frequencies above the He+ gyrofrequency), even though the highest amplitude waves were in the He band frequency range (below the He+ gyrofrequency). We also present wave power distributions for 29 EMIC simulations in straight magnetic field line geometry that show that the high wave number portion of the spectrum is in every case mostly due to the H band waves. Though He band waves are often associated with relativistic electron precipitation, it is possible that the He band waves do not directly scatter the sub-megaelectron volts (sub-MeV) electrons, but that the presence of He band waves is associated with high plasma density which lowers the minimum resonant energy so that these electrons can more easily resonate with the H band waves.}, language = {en} } @article{GoldschmidtPikovskijPoliti2019, author = {Goldschmidt, Richard Janis and Pikovskij, Arkadij and Politi, Antonio}, title = {Blinking chimeras in globally coupled rotators}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {29}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5105367}, pages = {7}, year = {2019}, abstract = {In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime, where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized, scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly reborn with a new reshuffled configuration. We identify three different kinds of rare blinking events and give a quantitative characterization by applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves.}, language = {en} } @article{JaoVafinChenetal.2019, author = {Jao, Chun-Sung and Vafin, Sergei and Chen, Ye and Gross, Matthias and Krasilnikov, Mikhail and Loisch, Gregor and Mehrling, Timon and Niemiec, Jacek and Oppelt, Anne and de la Ossa, Alberto Martinez and Osterhoff, Jens and Pohl, Martin and Stephan, Frank}, title = {Preliminary study for the laboratory experiment of cosmic-rays driven magnetic field amplification}, series = {High Energy Density Physics}, volume = {32}, journal = {High Energy Density Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-1818}, doi = {10.1016/j.hedp.2019.04.001}, pages = {31 -- 43}, year = {2019}, abstract = {To understand astrophysical magnetic-field amplification, we conducted a feasibility study for a laboratory experiment of a non-resonant streaming instability at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). This non-resonant streaming instability, also known as Bell's instability, is generally regarded as a candidate for the amplification of interstellar magnetic field in the upstream region of supernova-remnant shocks, which is crucial for the efficiency of diffusive shock acceleration. In the beam-plasma system composed of a radio-frequency electron gun and a gas-discharge plasma cell, the goal of our experiment is to demonstrate the development of the non-resonant streaming instability and to find its saturation level in the laboratory environment. Since we find that the electron beam will be significantly decelerated on account of an electrostatic streaming instability, which will decrease the growth rate of desired non-resonant streaming instability, we discuss possible ways to suppress the electrostatic streaming instability by considering the characteristics of a field-emission-based quasi continuous-wave electron beam.}, language = {en} } @article{ZhangHosseiniGunderetal.2019, author = {Zhang, Shanshan and Hosseini, Seyed Mehrdad and Gunder, Rene and Petsiuk, Andrei and Caprioglio, Pietro and Wolff, Christian Michael and Shoaee, Safa and Meredith, Paul and Schorr, Susan and Unold, Thomas and Burn, Paul L. and Neher, Dieter and Stolterfoht, Martin}, title = {The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells}, series = {Advanced materials}, volume = {31}, journal = {Advanced materials}, number = {30}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201901090}, pages = {11}, year = {2019}, abstract = {2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13\% with significant potential for further improvements.}, language = {en} } @article{JayEckertVazdaCruzetal.2019, author = {Jay, Raphael Martin and Eckert, Sebastian and Vaz da Cruz, Vinicius and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201904761}, pages = {10742 -- 10746}, year = {2019}, abstract = {Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer.}, language = {en} } @article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Backes, M. and Barnard, M. and Becherini, Y. and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Feijen, K. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kostunin, D. and Kraus, M. and Lamanna, G. and Lau, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Maxted, N. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, Luigi and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935458}, pages = {16}, year = {2019}, abstract = {Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.}, language = {en} } @article{DebPopovaHehnetal.2019, author = {Deb, Marwan and Popova, Elena and Hehn, Michel and Keller, Niels and Petit-Watelot, Sebastien and Bargheer, Matias and Mangin, Stephane and Malinowski, Gregory}, title = {Femtosecond Laser-Excitation-Driven High Frequency Standing Spin Waves in Nanoscale Dielectric Thin Films of Iron Garnets}, series = {Physical review letters}, volume = {123}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.123.027202}, pages = {6}, year = {2019}, abstract = {We demonstrate that femtosecond laser pulses allow triggering high-frequency standing spin-wave modes in nanoscale thin films of a bismuth-substituted yttrium iron garnet. By varying the strength of the external magnetic field, we prove that two distinct branches of the dispersion relation are excited for all the modes. This is reflected in particular at a very weak magnetic field (similar to 33 mT) by a spin dynamics with a frequency up to 15 GHz, which is 15 times higher than the one associated with the ferromagnetic resonance mode. We argue that this phenomenon is triggered by ultrafast changes of the magnetic anisotropy via laser excitation of incoherent and coherent phonons. These findings open exciting prospects for ultrafast photo magnonics.}, language = {en} } @misc{MenzelHeuerMilonni2019, author = {Menzel, Ralf and Heuer, Axel and Milonni, Peter W.}, title = {Entanglement, complementarity, and vacuum fields in spontaneous parametric down-conversion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1077}, issn = {1866-8372}, doi = {10.25932/publishup-47354}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473542}, pages = {16}, year = {2019}, abstract = {Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong-Ou-Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields.}, language = {en} } @article{BodrovaChechkinSokolov2019, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Sokolov, Igor M.}, title = {Scaled Brownian motion with renewal resetting}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.012120}, pages = {13}, year = {2019}, abstract = {We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion coefficient D(t)∼tα-1 with α>0 (scaled Brownian motion) is stochastically reset to its initial position, and starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when the resetting of the coordinate does not affect the diffusion coefficient's time dependence is considered in the other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)]. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal resetting and consider the dependence of the efficiency of search on the parameters of the process.}, language = {en} } @article{BodrovaChechkinSokolov2019, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Sokolov, Igor M.}, title = {Nonrenewal resetting of scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.012119}, pages = {10}, year = {2019}, abstract = {We investigate an intermittent stochastic process in which diffusive motion with a time-dependent diffusion coefficient, D(t)∼tα-1, α>0 (scaled Brownian motion), is stochastically reset to its initial position and starts anew. The resetting follows a renewal process with either an exponential or a power-law distribution of the waiting times between successive renewals. The resetting events, however, do not affect the time dependence of the diffusion coefficient, so that the whole process appears to be a nonrenewal one. We discuss the mean squared displacement of a particle and the probability density function of its positions in this process. We show that scaled Brownian motion with resetting demonstrates rich behavior whose properties essentially depend on the interplay of the parameters of the resetting process and the particle's displacement infree motion. The motion of particles can remain almost unaffected by resetting but can also get slowed down or even be completely suppressed. Especially interesting are the nonstationary situations in which the mean squared displacement stagnates but the distribution of positions does not tend to any steady state. This behavior is compared to the situation [discussed in the companion paper; A. S. Bodrova et al., Phys. Rev. E 100, 012120 (2019)] in which the memory of the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different.}, language = {en} } @article{AbdallaAdamAharonianetal.2019, author = {Abdalla, Hassan E. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Ashkar, H. and Backes, M. and Martins, V. Barbosa and Barnard, M. and Becherini, Y. and Berge, D. and Bernloehr, K. and Blackwell, R. and B{\"o}ttcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bregeon, J. and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and B{\"u}chele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chand, T. and Chandra, S. and Chen, A. and Colafrancesco, S. and Curylo, M. and Davids, I. D. and Deil, C. and Devin, J. and DeWilt, P. and Dirson, L. and Djannati-Ata, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Feijen, K. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and F{\"u}ßling, Matthias and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kostunin, D. and Kraus, M. and Lamanna, G. and Lau, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Levy, C. and Lohse, T. and Lypova, I and Mackey, J. and Majumdar, J. and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mares, A. and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Priyana Noel, A. and Prokhorov, D. A. and Prokoph, H. and P{\"u}hlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Sch{\"u}ssler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van Der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zacharias, Michael and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N. and Meyer, M.}, title = {Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935704}, pages = {19}, year = {2019}, abstract = {The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.}, language = {en} } @article{WoodfieldGlauertMeniettietal.2019, author = {Woodfield, Emma E. and Glauert, Saraha A. and Menietti, J. Douglas and Averkamp, Terrance F. and Horne, Richard B. and Shprits, Yuri}, title = {Rapid Electron Acceleration in Low-Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL083071}, pages = {7191 -- 7198}, year = {2019}, abstract = {Electron acceleration at Saturn due to whistler mode chorus waves has previously been assumed to be ineffective; new data closer to the planet show it can be very rapid (factor of 104 flux increase at 1 MeV in 10 days compared to factor of 2). A full survey of chorus waves at Saturn is combined with an improved plasma density model to show that where the plasma frequency falls below the gyrofrequency additional strong resonances are observed favoring electron acceleration. This results in strong chorus acceleration between approximately 2.5 R-S and 5.5 R-S outside which adiabatic transport may dominate. Strong pitch angle dependence results in butterfly pitch angle distributions that flatten over a few days at 100s keV, tens of days at MeV energies which may explain observations of butterfly distributions of MeV electrons near L = 3. Including cross terms in the simulations increases the tendency toward butterfly distributions. Plain Language Summary Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer toward the planet. This paper adds to the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. We use recent information from the Cassini spacecraft on the number and location of particles and also of the waves strength and location combined with computer simulations to show that a particular wave called chorus is excellent at heating the particles where the surrounding number of cold particles is low.}, language = {en} } @article{BroseSushchPohletal.2019, author = {Brose, Robert and Sushch, Iuri and Pohl, Martin and Luken, K. J. and Filipovic, M. D. and Lin, R.}, title = {Nonthermal emission from the reverse shock of the youngest galactic supernova remnant G1.9+0.3}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834430}, pages = {9}, year = {2019}, abstract = {Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of approximate to 100 yr and inferred shock speed of approximate to 14 000 km s(-1) could make it an efficient particle accelerator. Aims. We aim to model the observed radio and X-ray spectra together with the morphology of the remnant. At the same time, we aim to estimate the gamma-ray flux from the source and evaluate the prospects of its detection with future gamma-ray experiments. Methods. We performed spherical symmetric 1D simulations with the RATPaC code, in which we simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and pion-decay radiation from the source. Results. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. We find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with nonthermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron.}, language = {en} } @article{ShenarSablowskiHainichetal.2019, author = {Shenar, Tomer and Sablowski, D. P. and Hainich, Rainer and Todt, Helge Tobias and Moffat, Anthony F. J. and Oskinova, Lidia M. and Ramachandran, Varsha and Sana, Hugues and Sander, Andreas Alexander Christoph and Schnurr, O. and St-Louis, N. and Vanbeveren, D. and Gotberg, Y. and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud Spectroscopy, orbital analysis, formation, and evolution}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201935684}, pages = {68}, year = {2019}, abstract = {Context. Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z approximate to 0.5 Z(circle dot)), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45 +/- 30\% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only approximate to 12 +/- 7\% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12\% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises approximate to 4\% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L approximate to 5.2 [L-circle dot], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (v(eq) less than or similar to 250 km s(-1)) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.}, language = {en} } @article{HosseinzadehCowperthwaiteGomezetal.2019, author = {Hosseinzadeh, Griffin and Cowperthwaite, Philip S. and Gomez, Sebastian and Villar, Victoria Ashley and Nicholl, Matt and Margutti, Raffaella and Berger, Edo and Chornock, Ryan and Paterson, Kerry and Fong, Wen-fai and Savchenko, Volodymyr and Short, Phil and Alexander, Kate D. and Blanchard, Peter K. and Braga, Joao and Calkins, Michael L. and Cartier, Regis and Coppejans, Deanne L. and Eftekhari, Tarraneh and Laskar, Tanmoy and Ly, Chun and Patton, Locke and Pelisoli, Ingrid Domingos and Reichart, Daniel E. and Terreran, Giacomo and Williams, Peter K. G.}, title = {Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab271c}, pages = {14}, year = {2019}, abstract = {On 2019 April 25.346 and 26.640 UT the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo gravitational-wave (GW) observatory announced the detection of the first candidate events in Observing Run 3 that contained at least one neutron star (NS). S190425z is a likely binary neutron star (BNS) merger at d(L) = 156 +/- 41 Mpc, while S190426c is possibly the first NS-black hole (BH) merger ever detected, at d(L) = 377 +/- 100 Mpc, although with marginal statistical significance. Here we report our optical follow-up observations for both events using the MMT 6.5 m telescope, as well as our spectroscopic follow-up of candidate counterparts (which turned out to be unrelated) with the 4.1 m SOAR telescope. We compare to publicly reported searches, explore the overall areal coverage and depth, and evaluate those in relation to the optical/near-infrared (NIR) kilonova emission from the BNS merger GW170817, to theoretical kilonova models, and to short gamma-ray burst (SGRB) afterglows. We find that for a GW170817-like kilonova, the partial volume covered spans up to about 40\% for S190425z and 60\% for S190426c. For an on-axis jet typical of SGRBs, the search effective volume is larger, but such a configuration is expected in at most a few percent of mergers. We further find that wide-field gamma-ray and X-ray limits rule out luminous on-axis SGRBs, for a large fraction of the localization regions, although these searches are not sufficiently deep in the context of the gamma-ray emission from GW170817 or off-axis SGRB afterglows. The results indicate that some optical follow-up searches are sufficiently deep for counterpart identification to about 300 Mpc, but that localizations better than 1000 deg(2) are likely essential.}, language = {en} } @misc{BohdanNiemiecKobzaretal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin}, title = {Erratum: Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks (The astrophysical journal : an international review of spectroscopy and astronomical physics. - Vol 847, 2017, 71)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab2f89}, pages = {1}, year = {2019}, language = {en} } @article{QuessabDebGorchonetal.2019, author = {Quessab, Yassine and Deb, Marwan and Gorchon, J. and Hehn, M. and Malinowski, Gregory and Mangin, S.}, title = {Resolving the role of magnetic circular dichroism in multishot helicity-dependent all-optical switching}, series = {Physical review : B, Condensed matter and materials physics}, volume = {100}, journal = {Physical review : B, Condensed matter and materials physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.100.024425}, pages = {5}, year = {2019}, abstract = {By conducting helicity-dependent ultrafast magnetization dynamics in a CoTb ferrimagnetic alloy, we are able to quantitatively determine the magnetic circular dichroism (MCD) and resolve its role in the helicity-dependent all-optical switching (AOS). Unequivocal interpretation of the sign of the dichroism is provided by performing AOS and femtosecond laser-induced domain wall motion experiments. We demonstrate that AOS occurs when the magnetization is initially in the most absorbent state, according to the light helicity. Moreover, we evidence that the MCD creates a thermal gradient that drives a domain wall toward hotter regions. Our experimental results are in agreement with the purely thermal models of AOS.}, language = {en} } @article{KuehnGiangrisostomiJayetal.2019, author = {K{\"u}hn, Danilo and Giangrisostomi, Erika and Jay, Raphael Martin and Sorgenfrei, Nomi and F{\"o}hlisch, Alexander}, title = {The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab2f5c}, pages = {12}, year = {2019}, abstract = {Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources.}, language = {en} } @article{WangShprits2019, author = {Wang, Dedong and Shprits, Yuri}, title = {On How High-Latitude Chorus Waves Tip the Balance Between Acceleration and Loss of Relativistic Electrons}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {14}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL082681}, pages = {7945 -- 7954}, year = {2019}, abstract = {Modeling and observations have shown that energy diffusion by chorus waves is an important source of acceleration of electrons to relativistic energies. By performing long-term simulations using the three-dimensional Versatile Electron Radiation Belt code, in this study, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modeling of megaelectron volt (MeV) electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high-latitude chorus waves can tip the balance between acceleration and loss toward acceleration, or alternatively, the increase in high-latitude waves can result in a net loss of MeV electrons. Variations in high-latitude chorus may account for some of the variability of MeV electrons.}, language = {en} } @article{PapadakisMuellerBuschbaumLaschewsky2019, author = {Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andre}, title = {Switch It Inside-Out: "Schizophrenic" Behavior of All Thermoresponsive UCST-LCST Diblock Copolymers}, series = {Langmuir}, volume = {35}, journal = {Langmuir}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.9b01444}, pages = {9660 -- 9676}, year = {2019}, abstract = {This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(N-isopropylacrylamide) or poly(N-isopropyl methacrylamide). This allows for implementing the sequence of the UCST and LCST transitions of the polymers at will by adjusting either molecular or, alternatively, physical parameters. Depending on the location of the transition temperatures of both blocks, different switching scenarios are realized from micelles to inverse micelles, namely via the molecularly dissolved state, the aggregated state, or directly. In addition to studies of (semi)dilute aqueous solutions, highly concentrated systems have also been explored, namely water-swollen thin films. Concerning applications, we discuss the possible use of the diblock copolymers as "smart" nanocarriers.}, language = {en} } @article{PudellSanderBaueretal.2019, author = {Pudell, Jan-Etienne and Sander, M. and Bauer, R. and Bargheer, Matias and Herzog, Marc and Ga{\´a}l, Peter}, title = {Full Spatiotemporal Control of Laser-Excited Periodic Surface Deformations}, series = {Physical review applied}, volume = {12}, journal = {Physical review applied}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.12.024036}, pages = {11}, year = {2019}, abstract = {We demonstrate full control of acoustic and thermal periodic deformations at solid surfaces down to subnanosecond time scales and few-micrometer length scales via independent variation of the temporal and spatial phase of two optical transient grating (TG) excitations. For this purpose, we introduce an experimental setup that exerts control of the spatial phase of subsequent time-delayed TG excitations depending on their polarization state. Specific exemplary coherent control cases are discussed theoretically and corresponding experimental data are presented in which time-resolved x-ray reflectivity measures the spatiotemporal surface distortion of nanolayered heterostructures. Finally, we discuss examples where the application of our method may enable the control of functional material properties via tailored spatiotemporal strain fields.}, language = {en} } @article{WellsPoppenhaegerWatson2019, author = {Wells, Robert and Poppenh{\"a}ger, Katja and Watson, C. A.}, title = {Validation of a temperate fourth planet in the K2-133 multiplanet system}, series = {Monthly notices of the Royal Astronomical Society}, volume = {487}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1334}, pages = {1865 -- 1873}, year = {2019}, abstract = {We present follow-up observations of the K2-133 multiplanet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here, we report on the validation of the presence of the fourth planet, determining a radius of 1.73+0.14-0.13 R⊕. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the star's temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.}, language = {en} } @article{MeyerKreplinKrausetal.2019, author = {Meyer, Dominique M.-A. and Kreplin, Alexander and Kraus, S. and Vorobyov, E. I. and Haemmerl{\´e}, Lionel and Eisl{\"o}ffel, Jochen}, title = {On the ALMA observability of nascent massive multiple systems formed by gravitational instability}, series = {Monthly notices of the Royal Astronomical Society}, volume = {487}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1585}, pages = {4473 -- 4491}, year = {2019}, abstract = {Massive young stellar objects (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (alma) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at similar or equal to a few from the protostar can be resolved by interferometric alma Cycle 7 C43-8 and C43-10 observations at band 6 (), using a maximal 0.015 aracsec beam angular resolution and at least exposure time for sources at distances of . Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability.}, language = {en} } @article{SeilerSeissHoffmannetal.2019, author = {Seiler, Michael and Seiß, Martin and Hoffmann, Holger and Spahn, Frank}, title = {Hydrodynamic Simulations of Asymmetric Propeller Structures in Saturn's Rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {243}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/ab26b0}, pages = {16}, year = {2019}, abstract = {The observation of the non-Keplerian behavior of propeller structures in Saturn's outer A ring raises the question: how does the propeller respond to the wandering of the central embedded moonlet? Here, we study numerically how the structural imprint of the propeller changes for a libration of the moonlet. It turns out that the libration induces an asymmetry in the propeller, which depends on the libration period and amplitude of the moonlet. Further, we study the dependence of the asymmetry on the libration period and amplitude for a moonlet with a 400 m Hill radius, which is located in the outer A ring. This allows us to apply our findings to the largest known propeller Bl{\´e}riot, which is expected to be of a similar size. For Bl{\´e}riot, we can conclude that, supposing the moonlet is librating with the largest observed period of 11.1 yr and an azimuthal amplitude of about 1845 km, a small asymmetry should be measurable but depends on the moonlet's libration phase at the observation time. The longitude residuals of other trans-Encke propellers (e.g., Earhart) show amplitudes similar to Bl{\´e}riot, which might allow us to observe larger asymmetries due to their smaller azimuthal extent, allowing us to scan the whole gap structure for asymmetries in one observation. Although the librational model of the moonlet is a simplification, our results are a first step toward the development of a consistent model for the description of the formation of asymmetric propellers caused by a freely moving moonlet.}, language = {en} } @article{NivenAbelSchlegeletal.2019, author = {Niven, Robert K. and Abel, Markus and Schlegel, Michael and Waldrip, Steven H.}, title = {Maximum Entropy Analysis of Flow Networks: Theoretical Foundation and Applications}, series = {Entropy}, volume = {21}, journal = {Entropy}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e21080776}, pages = {776}, year = {2019}, abstract = {The concept of a "flow network"-a set of nodes and links which carries one or more flows-unites many different disciplines, including pipe flow, fluid flow, electrical, chemical reaction, ecological, epidemiological, neurological, communications, transportation, financial, economic and human social networks. This Feature Paper presents a generalized maximum entropy framework to infer the state of a flow network, including its flow rates and other properties, in probabilistic form. In this method, the network uncertainty is represented by a joint probability function over its unknowns, subject to all that is known. This gives a relative entropy function which is maximized, subject to the constraints, to determine the most probable or most representative state of the network. The constraints can include "observable" constraints on various parameters, "physical" constraints such as conservation laws and frictional properties, and "graphical" constraints arising from uncertainty in the network structure itself. Since the method is probabilistic, it enables the prediction of network properties when there is insufficient information to obtain a deterministic solution. The derived framework can incorporate nonlinear constraints or nonlinear interdependencies between variables, at the cost of requiring numerical solution. The theoretical foundations of the method are first presented, followed by its application to a variety of flow networks.}, language = {en} } @article{ChengBoekerTsarkova2019, author = {Cheng, Xiao and B{\"o}ker, Alexander and Tsarkova, Larisa}, title = {Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films}, series = {Polymers}, volume = {11}, journal = {Polymers}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym11081312}, pages = {18}, year = {2019}, abstract = {Solvent vapor annealing is as an effective and versatile alternative to thermal annealing to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific and practical aspects of the solvent vapor annealing method, including the discussion of such factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment, including practically interesting regimes of weakly saturated vapor leading to poorly swollen states, are discussed. Special focus is given to dual temperature control over the set-up instrumentation and to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived from the studies on block copolymer films can be applied to improve the processing of thin films of crystalline and conjugated polymers as well as polymer composite in confined geometries.}, language = {en} } @article{DeschlerNeherSchmidtMende2019, author = {Deschler, Felix and Neher, Dieter and Schmidt-Mende, Lukas}, title = {Perovskite semiconductors for next generation optoelectronic applications}, series = {APL Materials}, volume = {7}, journal = {APL Materials}, number = {8}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2166-532X}, doi = {10.1063/1.5119744}, pages = {3}, year = {2019}, language = {en} } @misc{CestnikAbel2019, author = {Cestnik, Rok and Abel, Markus}, title = {Erratum: Inferring the dynamics of oscillatory systems using recurrent neural networks (Chaos : an interdisciplinary journal of nonlinear science. - 29 (2019) 063128)}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {29}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {8}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5122803}, pages = {1}, year = {2019}, language = {en} } @misc{DekaPohlVafinetal.2019, author = {Deka, Pranab Jyoti and Pohl, Martin and Vafin, Sergei and Bohdan, Artem}, title = {Erratum: Revisit of Nonlinear Landau Damping for Electrostatic Instability Driven by Blazar-induced Pair Beams (The astrophysical journal. - 873 (2019), pg 10)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4593}, pages = {2}, year = {2019}, language = {en} } @article{BeckerPettiniRafelskietal.2019, author = {Becker, George D. and Pettini, Max and Rafelski, Marc and Boera, Elisa and Christensen, Lise and Cupani, Guido and Ellison, Sara L. and Farina, Emanuele Paolo and Fumagalli, Michele and Lopez, Sebastian and Neeleman, Marcel and Ryan-Weber, Emma and Worseck, Gabor}, title = {The Evolution of OI over 3.2 < z < 6.5: Reionization of the Circumgalactic Medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab3eb5}, pages = {37}, year = {2019}, abstract = {We present a survey for metal absorption systems traced by neutral oxygen over 3.2 < z < 6.5. Our survey uses Keck/ESI and VLT/X-Shooter spectra of 199 QSOs with redshifts up to 6.6. In total, we detect 74 OI absorbers, of which 57 are separated from the background QSO by more than 5000 km s(-1). We use a maximum likelihood approach to fit the distribution of OI lambda 1302 equivalent widths in bins of redshift and from this determine the evolution in number density of absorbers with W-1302 > 0.05 angstrom, of which there are 49 nonproximate systems in our sample. We find that the number density does not monotonically increase with decreasing redshift, as would naively be expected from the buildup of metal-enriched circumgalactic gas with time. The number density over 4.9 < z < 5.7 is a factor of 1.7-4.1 lower (68\% confidence) than that over 5.7 < z < 6.5, with a lower value at z < 5.7 favored with 99\% confidence. This decrease suggests that the fraction of metals in a low-ionization phase is larger at z similar to 6 than at lower redshifts. Absorption from highly ionized metals traced by CIV is also weaker in higher-redshift OI systems, supporting this picture. The evolution of OI absorbers implies that metal-enriched circumgalactic gas at z similar to 6 is undergoing an ionization transition driven by a strengthening ultraviolet background. This in turn suggests that the reionization of the diffuse intergalactic medium may still be ongoing at or only recently ended by this epoch.}, language = {en} } @article{ShpritsVasileZhelayskaya2019, author = {Shprits, Yuri and Vasile, Ruggero and Zhelayskaya, Irina S.}, title = {Nowcasting and Predicting the Kp Index Using Historical Values and Real-Time Observations}, series = {Space Weather: The International Journal of Research and Applications}, volume = {17}, journal = {Space Weather: The International Journal of Research and Applications}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2018SW002141}, pages = {1219 -- 1229}, year = {2019}, abstract = {Current algorithms for the real-time prediction of the Kp index use a combination of models empirically driven by solar wind measurements at the L1 Lagrange point and historical values of the index. In this study, we explore the limitations of this approach, examining the forecast for short and long lead times using measurements at L1 and Kp time series as input to artificial neural networks. We explore the relative efficiency of the solar wind-based predictions, predictions based on recurrence, and predictions based on persistence. Our modeling results show that for short-term forecasts of approximately half a day, the addition of the historical values of Kp to the measured solar wind values provides a barely noticeable improvement. For a longer-term forecast of more than 2 days, predictions can be made using recurrence only, while solar wind measurements provide very little improvement for a forecast with long horizon times. We also examine predictions for disturbed and quiet geomagnetic activity conditions. Our results show that the paucity of historical measurements of the solar wind for high Kp results in a lower accuracy of predictions during disturbed conditions. Rebalancing of input data can help tailor the predictions for more disturbed conditions.}, language = {en} } @article{WilkinParrishYangetal.2019, author = {Wilkin, Kyle J. and Parrish, Robert M. and Yang, Jie and Wolf, Thomas J. A. and Nunes, J. Pedro F. and G{\"u}hr, Markus and Li, Renkai and Shen, Xiaozhe and Zheng, Qiang and Wang, Xijie and Martinez, Todd J. and Centurion, Martin}, title = {Diffractive imaging of dissociation and ground-state dynamics in a complex molecule}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {100}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.100.023402}, pages = {10}, year = {2019}, abstract = {We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p perpendicular to orbital to a mixed 5p parallel to sigma hole and CF2 center dot antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs.}, language = {en} } @article{IrrgangGeierHeberetal.2019, author = {Irrgang, Andreas and Geier, Stephan and Heber, Ulrich and Kupfer, Thomas and F{\"u}rst, F.}, title = {PG 1610+062: a runaway B star challenging classical ejection mechanisms}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {628}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935429}, pages = {17}, year = {2019}, abstract = {Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4-5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia's second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s-1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known.}, language = {en} } @article{HenkelJacobStoppetal.2019, author = {Henkel, Carsten and Jacob, Georg and Stopp, Felix and Schmidt-Kaler, Ferdinand and Keil, Mark and Japha, Yonathan and Folman, Ron}, title = {Stern-Gerlach splitting of low-energy ion beams}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab36c7}, pages = {14}, year = {2019}, abstract = {We present a feasibility study with several magnetic field configurations for creating spin-dependent forces that can split a low-energy ion beam by the Stern-Gerlach (SG) effect. To the best of our knowledge, coherent spin-splittings of charged particles have yet to be realised. Our proposal is based on ion source parameters taken from a recent experiment that demonstrated single-ion implantation from a high-brightness ion source combined with a radio-frequency Paul trap. The inhomogeneous magnetic fields can be created by permanently magnetised microstructures or from current-carrying wires with sizes in the micron range, such as those recently used in a successful implementation of the SG effect with neutral atoms. All relevant forces (Lorentz force and image charges) are taken into account, and measurable splittings are found by analytical and numerical calculations.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} } @article{WolfParrishMyhreetal.2019, author = {Wolf, Thomas J. A. and Parrish, Robert M. and Myhre, Rolf H. and Martinez, Todd J. and Koch, Henrik and G{\"u}hr, Markus}, title = {Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b05573}, pages = {6897 -- 6903}, year = {2019}, abstract = {We studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state. In thymine, we observe relaxation from the optically bright (1)pi pi* state of thymine to a dark (1)n pi* state within 80 +/- 30 fs. The (1)n pi* state relaxes further within 3.5 +/- 0.3 ps to a low-lying electronic state. By comparison with quantum chemical simulations, we can unambiguously assign its spectroscopic signature to the (3)pi pi* state. Hence, our study draws a comprehensive picture of the relaxation mechanism of thymine including ultrafast intersystem crossing to the triplet manifold.}, language = {en} } @article{NikolisMischokSiegmundetal.2019, author = {Nikolis, Vasileios C. and Mischok, Andreas and Siegmund, Bernhard and Kublitski, Jonas and Jia, Xiangkun and Benduhn, Johannes and H{\"o}rmann, Ulrich and Neher, Dieter and Gather, Malte C. and Spoltore, Donato and Vandewal, Koen}, title = {Strong light-matter coupling for reduced photon energy losses in organic photovoltaics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11717-5}, pages = {8}, year = {2019}, abstract = {Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.}, language = {en} } @article{StolterfohtCaprioglioWolffetal.2019, author = {Stolterfoht, Martin and Caprioglio, Pietro and Wolff, Christian Michael and Marquez, Jose A. and Nordmann, Joleik and Zhang, Shanshan and Rothhardt, Daniel and H{\"o}rmann, Ulrich and Amir, Yohai and Redinger, Alex and Kegelmann, Lukas and Zu, Fengshuo and Albrecht, Steve and Koch, Norbert and Kirchartz, Thomas and Saliba, Michael and Unold, Thomas and Neher, Dieter}, title = {The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells}, series = {Energy \& environmental science}, volume = {12}, journal = {Energy \& environmental science}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c9ee02020a}, pages = {2778 -- 2788}, year = {2019}, abstract = {Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4\%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces.}, language = {en} } @article{LeCorreStolterfohtPerdigonToroetal.2019, author = {Le Corre, Vincent M. and Stolterfoht, Martin and Perdig{\´o}n-Toro, Lorena and Feuerstein, Markus and Wolff, Christian Michael and Gil-Escrig, Lidon and Bolink, Henk J. and Neher, Dieter and Koster, L. Jan Anton}, title = {Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness}, series = {ACS Applied Energy Materials}, volume = {2}, journal = {ACS Applied Energy Materials}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0962}, doi = {10.1021/acsaem.9b00856}, pages = {6280 -- 6287}, year = {2019}, abstract = {Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24\%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20\%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs.}, language = {en} } @article{TubianaRinaldiGuettleretal.2019, author = {Tubiana, C. and Rinaldi, G. and Guettler, C. and Snodgrass, C. and Shi, X. and Hu, X. and Marschall, R. and Fulle, M. and Bockeele-Morvan, D. and Naletto, G. and Capaccioni, F. and Sierks, H. and Arnold, G. and Barucci, M. A. and Bertaux, J-L and Bertini, I and Bodewits, D. and Capria, M. T. and Ciarniello, M. and Cremonese, G. and Crovisier, J. and Da Deppo, V and Debei, S. and De Cecco, M. and Deller, J. and De Sanctis, M. C. and Davidsson, B. and Doose, L. and Erard, S. and Filacchione, G. and Fink, U. and Formisano, M. and Fornasier, S. and Gutierrez, P. J. and Ip, W-H and Ivanovski, S. and Kappel, David and Keller, H. U. and Kolokolova, L. and Koschny, D. and Krueger, H. and La Forgia, F. and Lamy, P. L. and Lara, L. M. and Lazzarin, M. and Levasseur-Regourd, A. C. and Lin, Z-Y and Longobardo, A. and Lopez-Moreno, J. J. and Marzari, F. and Migliorini, A. and Mottola, S. and Rodrigo, R. and Taylor, F. and Toth, I and Zakharov, V}, title = {Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834869}, pages = {14}, year = {2019}, abstract = {Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims. We aim to characterize the spatial distribution of dust, H2O, and CO2 gas in the inner coma. To do this, we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the rate we calculated using a thermophysical model. Methods. For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O emission band), and 4200 nm (CO2 emission band). We measured the average signal in a circular annulus to study the spatial variation around the comet, and in a sector of the annulus to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet center. Results. The spatial correlation between dust and water, both coming from the sunlit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0 degrees subsolar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production with respect to the value calculated using a simple thermophysical model is observed when the head lobe and regions of the southern hemisphere with strong seasonal variations are illuminated (subsolar longitude 270 degrees-50 degrees). A drastic decrease in dust production when the water production (both measured and from the model) displays a maximum occurs when typical northern consolidated regions are illuminated and the southern hemisphere regions with strong seasonal variations are instead in shadow (subsolar longitude 50 degrees-90 degrees). Possible explanations of these observations are presented and discussed.}, language = {en} } @article{RinaldiFormisanoKappeletal.2019, author = {Rinaldi, G. and Formisano, M. and Kappel, David and Capaccioni, F. and Bockelee-Morvan, D. and Cheng, Y-C and Vincent, J-B and Deshapriya, P. and Arnold, G. and Capria, M. T. and Ciarniello, M. and De Sanctis, M. C. and Doose, L. and Erard, S. and Federico, C. and Filacchione, G. and Fink, U. and Leyrat, C. and Longobardo, A. and Magni, G. and Mighorini, A. and Mottola, S. and Naletto, G. and Raponi, A. and Taylor, F. and Tosi, F. and Tozzi, G. P. and Salatti, M.}, title = {Analysis of night-side dust activity on comet 67P observed by VIRTIS-M}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834907}, pages = {16}, year = {2019}, abstract = {On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we present here, we observe a dust plume that originates on the far side of the nucleus. We are able to identify the approximate location of its source at the boundary between the Hapi and Anuket regions, and we find that it has been in darkness for some hours before the observation. Assuming that this time span is equal to the conductive time scale, we obtain a thermal inertia in the range 25-36 W K-1 m(-2) s(-1/2). These thermal inertia values can be used to verify with a 3D finite-element method (REM) numerical code whether the surface and subsurface temperatures agree with the values found in the literature. We explored three different configurations: (1) a layer of water ice mixed with dust beneath a dust mantle of 5 mm with thermal inertia of 36 J m(-2) K-1 S-0.5 ; (2) the same structure, but with thermal inertia of 100 J m(-2) K-1 S-0.5; (3) an ice-dust mixture that is directly exposed. Of these three configurations, the first seems to be the most reasonable, both for the low thermal inertia and for the agreement with the surface and subsurface temperatures that have been found for the comet 67P/Churyumov-Gerasimenko. The spectral properties of the plume show that the visible dust color ranged from 16 +/- 4.8\%/100 nm to 13 +/- 2.6\%/100 nm, indicating that this plume has no detectable color gradient. The morphology of the plume can be classified as a narrow jet that has an estimated total ejected mass of between 6 and 19 tons when we assume size distribution indices between -2.5 and -3.}, language = {en} } @article{SchaffenrothBarlowGeieretal.2019, author = {Schaffenroth, Veronika and Barlow, Brad N. and Geier, Stephan and Vuckovic, Maja and Kilkenny, D. and Wolz, M. and Kupfer, Thomas and Heber, Ulrich and Drechsel, H. and Kimeswenger, S. and Marsh, T. and Wolf, M. and Pelisoli, Ingrid Domingos and Freudenthal, Joseph and Dreizler, S. and Kreuzer, S. and Ziegerer, E.}, title = {The EREBOS project: Investigating the effect of substellar and low-mass stellar companions on late stellar evolution Survey, target selection, and atmospheric parameters}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936019}, pages = {29}, year = {2019}, abstract = {Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10\% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.}, language = {en} } @article{MehrabiSchulzDsouzaetal.2019, author = {Mehrabi, Pedram and Schulz, Eike C. and Dsouza, Raison and M{\"u}ller-Werkmeister, Henrike and Tellkamp, Friedjof and Miller, R. J. Dwayne and Pai, Emil F.}, title = {Time-resolved crystallography reveals allosteric communication aligned with molecular breathing}, series = {Science}, volume = {365}, journal = {Science}, number = {6458}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aaw9904}, pages = {1167 -- 1170}, year = {2019}, abstract = {A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework's dynamics and entropy constitute crucial components of the catalytic machinery.}, language = {en} } @article{DebPopovaHehnetal.2019, author = {Deb, Marwan and Popova, Elena and Hehn, Michel and Keller, Niels and Petit-Watelot, Sebastien and Bargheer, Matias and Mangin, Stephane and Malinowski, Gregory}, title = {Damping of Standing Spin Waves in Bismuth-Substituted Yttrium Iron Garnet as Seen via the Time-Resolved Magneto-Optical Kerr Effect}, series = {Physical review applied}, volume = {12}, journal = {Physical review applied}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.12.044006}, pages = {7}, year = {2019}, abstract = {We investigate spin-wave resonance modes and their damping in insulating thin films of bismuth-substituted yttrium iron garnet by performing femtosecond magneto-optical pump-probe experiments. For large magnetic fields in the range below the magnetization saturation, we find that the damping of high-order standing spin-wave (SSW) modes is about 40 times lower than that for the fundamental one. The observed phenomenon can be explained by considering different features of magnetic anisotropy and exchange fields that, respectively, define the precession frequency for fundamental and high-order SSWs. These results provide further insight into SSWs in iron garnets and may be exploited in many new photomagnonic devices.}, language = {en} } @misc{LazarianYan2019, author = {Lazarian, Alexander and Yan, Huirong}, title = {Erratum: Superdiffusion of Cosmic Rays: Implications for Cosmic Ray Acceleration (The American Astronomical Society. - Vol. 784, (2014), 38)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab50ba}, pages = {1}, year = {2019}, abstract = {Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian \& Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x 3 for freely streaming CRs. The dependence changes to x 3/2 for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.}, language = {en} } @article{PittarelloGoderisSoensetal.2019, author = {Pittarello, Lidia and Goderis, Steven and Soens, Bastien and McKibbin, Seann J. and Giuli, Gabriele and Bariselli, Federico and Dias, Bruno and Helber, Bernd and Lepore, Giovanni Orazio and Vanhaecke, Frank and K{\"o}berl, Christian and Magin, Thierry E. and Claeys, Philippe}, title = {Meteoroid atmospheric entry investigated with plasma flow experiments: Petrography and geochemistry of the recovered material}, series = {Icarus : international journal of solar system studies}, volume = {331}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2019.04.033}, pages = {170 -- 178}, year = {2019}, abstract = {Melting experiments attempting to reproduce some of the processes affecting asteroidal and cometary material during atmospheric entry have been performed in a high enthalpy facility. For the first time with the specific experimental setup, the resulting material has been recovered, studied, and compared with natural analogues, focusing on the thermal and redox reactions triggered by interaction between the melt and the atmospheric gases under high temperature and low pressure conditions. Experimental conditions were tested across a range of parameters, such as heat flux, experiment duration, and pressure, using two types of sample holders materials, namely cork and graphite. A basalt served as asteroidal analog and to calibrate the experiments, before melting a H5 ordinary chondrite meteorite. The quenched melt recovered after the experiments has been analyzed by mu-XRF, EDS-SEM, EMPA, LA-ICP-MS, and XANES spectroscopy. The glass formed from the basalt is fairly homogeneous, depleted in highly volatile elements (e.g., Na, K), relatively enriched in moderately siderophile elements (e.g., Co, Ni), and has reached an equilibrium redox state with a lower Fe3+/Fe-tot ratio than that in the starting material. Spherical objects, enriched in SiO2, Na2O and K2O, were observed, inferring condensation from the vaporized material. Despite instantaneous quenching, the melt formed from the ordinary chondrite shows extensive crystallization of mostly olivine and magnetite, the latter indicative of oxygen fugacity compatible with presence of both Fe2+ and Fe3+. Similar features have been observed in natural meteorite fusion crusts and in micrometeorites, implying that, at least in terms of maximum temperature reached and chemical reactions, the experiments have successfully reproduced the conditions likely encountered by extraterrestrial material following atmospheric entry.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2019, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buchovecky, M. and Calderon-Madera, D. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Giuri, C. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Oliver and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Nievas-Rosillo, M. and Ong, R. A. and Pfrang, Konstantin Johannes and Pohl, Martin and Prado, R. R. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Ribeiro, D. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Svraka, T. and Weinstein, A. and Wells, R. M. and Wilcox, Patrick and Wilhelm, Alina and Williams, David Arnold and Williamson, T. J. and Zitzer, B.}, title = {Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4817}, pages = {8}, year = {2019}, abstract = {The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the universe?s history. Spectral measurements of blazars at very high energies (>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56?56 ?m, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.}, language = {en} } @article{SoupionaSamarasOrtizAmezcuaetal.2019, author = {Soupiona, Ourania and Samaras, Stefanos and Ortiz-Amezcua, Pablo and B{\"o}ckmann, Christine and Papayannis, Alexandros D. and Moreira, Gregori De Arruda and Benavent-Oltra, Jose Antonio and Guerrero-Rascado, Juan Luis and Bedoya-Vel{\´a}squez, Andres Esteban and Olmo-Reyes, Francisco Jos{\´e} and Rom{\´a}n, Roberto and Kokkalis, Panagiotis and Mylonaki, Maria and Alados-Arboledas, Lucas and Papanikolaou, Christina Anna and Foskinis, Romanos}, title = {Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes}, series = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, volume = {214}, journal = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, publisher = {Elsevier}, address = {Oxford}, issn = {1352-2310}, doi = {10.1016/j.atmosenv.2019.116824}, pages = {15}, year = {2019}, abstract = {In this paper we extract the aerosol microphysical properties for a collection of mineral dust cases measured by multi-wavelength depolarization Raman lidar systems located at the National Technical University of Athens (NTUA, Athens, Greece) and the Andalusian Institute for Earth System Research (IISTA-CEAMA, Granada, Spain). The lidar-based retrievals were carried out with the Spheroidal Inversion eXperiments software tool (SphInX) developed at the University of Potsdam (Germany). The software uses regularized inversion of a two-dimensional enhancement of the Mie model based on the spheroid-particle approximation with the aspect ratio determining the particle shape. The selection of the cases was based on the transport time from the source regions to the measuring sites. The aerosol optical depth as measured by AERONET ranged from 0.27 to 0.54 (at 500 nm) depending on the intensity of each event. Our analysis showed the hourly mean particle linear depolarization ratio and particle lidar ratio values at 532 nm ranging from 11 to 34\% and from 42 to 79 sr respectively, depending on the mixing status, the corresponding air mass pathways and their transport time. Cases with shorter transport time showed good agreement in terms of the optical and SphInX-retrieved microphysical properties between Athens and Granada providing a complex refractive index value equal to 1.4 + 0.004i. On the other hand, the results for cases with higher transport time deviated from the aforementioned ones as well as from each other, providing, in particular, an imaginary part of the refractive index ranging from 0.002 to 0.005. Reconstructions of two-dimensional shape-size distributions for each selected layer showed that the dominant effective particle shape was prolate with diverse spherical contributions. The retrieved volume concentrations reflect overall the intensity of the episodes.}, language = {en} } @article{BaranTeltingJefferyetal.2019, author = {Baran, Andrzej S. and Telting, J. H. and Jeffery, C. Simon and Ostensen, R. H. and Vos, Joris and Reed, M. D. and Vŭcković, Maja}, title = {K2 observations of the sdBV plus dM/bd binaries PHL457 and EQPsc}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2209}, pages = {1556 -- 1571}, year = {2019}, abstract = {We present an analysis of two pulsating subdwarf B stars PHL 457 and EQ Psc observed during the K2 mission. The K2 light curves of both stars show variation consistent with irradiation of a cooler companion by the hot subdwarf. They also show higher frequency oscillations consistent with pulsation. Using new spectroscopic data, we measured the radial velocity, effective temperature, surface gravity, and helium abundance of both hot subdwarfs as a function of orbital phase. We confirm the previously published spectroscopic orbit of PHL 457, and present the first spectroscopic orbit of EQ Psc. The orbital periods are 0.313 and 0.801 d, respectively. For EQPsc, we find a strong correlation between T-eff and orbital phase, due to contribution of light from the irradiated companion. We calculated amplitude spectra, identified significant pulsation frequencies, and searched for multiplets and asymptotic period spacings. By means of multiplets and period spacing, we identified the degrees of several pulsation modes in each star. The g-mode multiplets indicate subsynchronous core rotation with periods of 4.6 d (PHL 457) and 9.4 d (EQ Psc). We made spectral energy disctribution (SED) fits of PHL 457 and EQ Psc using available broad-band photometry and Gaia data. While the SED of PHL 457 shows no evidence of a cool companion, the SED for EQPsc clearly shows an infrared (IR) access consistent with a secondary with a temperature of about 6800K and a radius of 0.23 R-circle dot. This is the first detection of an IR access in any sdB + dM binary.}, language = {en} } @article{EliazarMetzlerReuveni2019, author = {Eliazar, Iddo and Metzler, Ralf and Reuveni, Shlomi}, title = {Poisson-process limit laws yield Gumbel max-min and min-max}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.022129}, pages = {12}, year = {2019}, abstract = {"A chain is only as strong as its weakest link" says the proverb. But what about a collection of statistically identical chains: How long till all chains fail? The answer to this question is given by the max-min of a matrix whose (i,j)entry is the failure time of link j of chain i: take the minimum of each row, and then the maximum of the rows' minima. The corresponding min-max is obtained by taking the maximum of each column, and then the minimum of the columns' maxima. The min-max applies to the storage of critical data. Indeed, consider multiple backup copies of a set of critical data items, and consider the (i,j) matrix entry to be the time at which item j on copy i is lost; then, the min-max is the time at which the first critical data item is lost. In this paper we address random matrices whose entries are independent and identically distributed random variables. We establish Poisson-process limit laws for the row's minima and for the columns' maxima. Then, we further establish Gumbel limit laws for the max-min and for the min-max. The limit laws hold whenever the entries' distribution has a density, and yield highly applicable approximation tools and design tools for the max-min and min-max of large random matrices. A brief of the results presented herein is given in: Gumbel central limit theorem for max-min and min-max}, language = {en} } @article{EliazarMetzlerReuveni2019, author = {Eliazar, Iddo and Metzler, Ralf and Reuveni, Shlomi}, title = {Gumbel central limit theorem for max-min and min-max}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.020104}, pages = {6}, year = {2019}, abstract = {The max-min and min-max of matrices arise prevalently in science and engineering. However, in many real-world situations the computation of the max-min and min-max is challenging as matrices are large and full information about their entries is lacking. Here we take a statistical-physics approach and establish limit laws—akin to the central limit theorem—for the max-min and min-max of large random matrices. The limit laws intertwine random-matrix theory and extreme-value theory, couple the matrix dimensions geometrically, and assert that Gumbel statistics emerge irrespective of the matrix entries' distribution. Due to their generality and universality, as well as their practicality, these results are expected to have a host of applications in the physical sciences and beyond.}, language = {en} } @misc{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {35}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1909551116}, pages = {17158 -- 17159}, year = {2019}, language = {en} } @article{ErdmannKupschMuelleretal.2019, author = {Erdmann, Maren and Kupsch, Andreas and M{\"u}ller, Bernd Randolf and Hentschel, Manfred P. and Niebergall, Ute and B{\"o}hning, Martin and Bruno, Giovanni}, title = {Diesel-induced transparency of plastically deformed high-density polyethylene}, series = {Journal of materials science}, volume = {54}, journal = {Journal of materials science}, number = {17}, publisher = {Springer}, address = {New York}, issn = {0022-2461}, doi = {10.1007/s10853-019-03700-8}, pages = {11739 -- 11755}, year = {2019}, abstract = {High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching.}, language = {en} } @article{PelisoliVos2019, author = {Pelisoli, Ingrid Domingos and Vos, Joris}, title = {Gaia Data Release 2 catalogue of extremely low-mass white dwarf candidates}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1876}, pages = {2892 -- 2903}, year = {2019}, abstract = {Extremely low-mass white dwarf stars (ELMs) are M < 0.3 M-circle dot helium-core white dwarfs born either as a result of a common-envelope phase or after a stable Roche lobe overflow episode in a multiple system. The Universe is not old enough for ELMs to have formed through single-star evolution channels. As remnants of binary evolution, ELMs can shed light onto the poorly understood phase of common-envelope evolution and provide constraints to the physics of mass accretion. Most known ELMs will merge in less than a Hubble time, providing an important contribution to the signal to be detected by upcoming space-based gravitational wave detectors. There are currently less than 150 known ELMs; most were selected by colour, focusing on hot objects, in a magnitude-limited survey of the Northern hemisphere only. Recent theoretical models have predicted a much larger space density for ELMs than estimated observationally based on this limited sample. In order to perform meaningful comparisons with theoretical models and test their predictions, a larger well-defined sample is required. In this work, we present a catalogue of ELM candidates selected from the second data release of Gaia (DR2). We have used predictions from theoretical models and analysed the properties of the known sample to map the space spanned by ELMs in the Gaia Hertzsprung-Russell diagram. Defining a set of colour cuts and quality flags, we have obtained a final sample of 5762 ELM candidates down to T-eff approximate to 5000 K.}, language = {en} } @article{KrapfMetzler2019, author = {Krapf, Diego and Metzler, Ralf}, title = {Strange interfacial molecular dynamics}, series = {Physics today}, volume = {72}, journal = {Physics today}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0031-9228}, doi = {10.1063/PT.3.4294}, pages = {48 -- 54}, year = {2019}, language = {en} } @article{BergEllisonSanchezRamirezetal.2019, author = {Berg, Trystyn A. M. and Ellison, Sara L. and Sanchez-Ramirez, Ruben and Lopez, Sebastian and Becker, George D. and Christensen, Lise and Cupani, Guido and Denney, Kelly D. and Worseck, Gabor}, title = {Sub-damped Lyman alpha systems in the XQ-100 survey - I. Identification and contribution to the cosmological H I budget}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2012}, pages = {4356 -- 4369}, year = {2019}, language = {en} } @article{GongLibeskindTempeletal.2019, author = {Gong, Chen Chris and Libeskind, Noam I. and Tempel, Elmo and Guo, Quan and Gottloeber, Stefan and Yepes, Gustavo and Wang, Peng and Sorce, Jenny and Pawlowski, Marcel}, title = {The origin of lopsided satellite galaxy distribution in galaxy pairs}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1917}, pages = {3100 -- 3108}, year = {2019}, abstract = {It is well known that satellite galaxies are not isotropically distributed among their host galaxies as suggested by most interpretations of the Λ cold dark matter (ΛCDM) model. One type of anisotropy recently detected in the Sloan Digital Sky Survey (and seen when examining the distribution of satellites in the Local Group and in the Centaurus group) is a tendency to be so-called lopsided. Namely, in pairs of galaxies (like Andromeda and the Milky Way) the satellites are more likely to inhabit the region in between the pair, rather than on opposing sides. Although recent studies found a similar set-up when comparing pairs of galaxies in ΛCDM simulations indicating that such a set-up is not inconsistent with ΛCDM, the origin has yet to be explained. Here we examine the origin of such lopsided set-ups by first identifying such distributions in pairs of galaxies in numerical cosmological simulations, and then tracking back the orbital trajectories of satellites (which at z = 0 display the effect). We report two main results: first, the lopsided distribution was stronger in the past and weakens towards z = 0. Secondly, the weakening of the signal is due to the interaction of satellite galaxies with the pair. Finally, we show that the z = 0 signal is driven primarily by satellites that are on first approach, who have yet to experience a 'flyby'. This suggests that the signal seen in the observations is also dominated by dynamically young accretion events.}, language = {en} } @article{HaniEllisonSparreetal.2019, author = {Hani, Maan H. and Ellison, Sara L. and Sparre, Martin and Grand, Robert J. J. and Pakmor, R{\"u}diger and G{\´o}mez, Facundo A. and Springel, Volker}, title = {The diversity of the circumgalactic medium around z=0 Milky Way-mass galaxies from the Auriga simulations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1708}, pages = {135 -- 152}, year = {2019}, abstract = {Galaxies are surrounded by massive gas reservoirs ( i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated MilkyWay-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L-star galaxies is extremely diverse: column densities of commonly observed species span similar to 3-4 dex and their covering fractions range from similar to 5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions ( CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L-star galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.}, language = {en} } @article{TeichmannRosenblum2019, author = {Teichmann, Erik and Rosenblum, Michael}, title = {Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {29}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5118843}, pages = {11}, year = {2019}, abstract = {We numerically and analytically analyze transitions between different synchronous states in a network of globally coupled phase oscillators with attractive and repulsive interactions. The elements within the attractive or repulsive group are identical, but natural frequencies of the groups differ. In addition to a synchronous two-cluster state, the system exhibits a solitary state, when a single oscillator leaves the cluster of repulsive elements, as well as partially synchronous quasiperiodic dynamics. We demonstrate how the transitions between these states occur when the repulsion starts to prevail over attraction.}, language = {en} } @article{DierckeKuckeinDenker2019, author = {Diercke, Andrea and Kuckein, Christoph and Denker, Carsten}, title = {Dynamics and connectivity of an extended arch filament system}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {629}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935583}, pages = {14}, year = {2019}, abstract = {Aims. In this study, we analyzed a filament system, which expanded between moving magnetic features (MMFs) of a decaying sunspot and opposite flux outside of the active region from the nearby quiet-Sun network. This configuration deviated from a classical arch filament system (AFS), which typically connects two pores in an emerging flux region. Thus, we called this system an extended AFS. We contrasted classical and extended AFSs with an emphasis on the complex magnetic structure of the latter. Furthermore, we examined the physical properties of the extended AFS and described its dynamics and connectivity. Methods. The extended AFS was observed with two instruments at the Dunn Solar Telescope (DST). The Rapid Oscillations in the Solar Atmosphere (ROSA) imager provided images in three different wavelength regions, which covered the dynamics of the extended AFS at different atmospheric heights. The Interferometric Bidimensional Spectropolarimeter (IBIS) provided spectroscopic Ha data and spectropolarimetric data that was obtained in the near-infrared (NIR) Call lambda 8542 angstrom line. We derived the corresponding line-of-sight (LOS) velocities and used He II lambda 304 angstrom extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (AIA) and LOS magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) as context data. Results. The NIR Call Stokes-V maps are not suitable to definitively define a clear polarity inversion line and to classify this chromospheric structure. Nevertheless, this unusual AFS connects the MMFs of a decaying sunspot with the network field. At the southern footpoint, we measured that the flux decreases over time. We find strong downflow velocities at the footpoints of the extended AFS, which increase in a time period of 30 min. The velocities are asymmetric at both footpoints with higher velocities at the southern footpoint. An EUV brigthening appears in one of the arch filaments, which migrates from the northern footpoint toward the southern one. This activation likely influences the increasing redshift at the southern footpoint. Conclusions. The extended AFS exhibits a similar morphology as classical AFSs, for example, threaded filaments of comparable length and width. Major differences concern the connection from MMFs around the sunspot with the flux of the neighboring quietSun network, converging footpoint motions, and longer lifetimes of individual arch filaments of about one hour, while the extended AFS is still very dynamic.}, language = {en} } @article{ShoaeeArminStolterfohtetal.2019, author = {Shoaee, Safa and Armin, Ardalan and Stolterfoht, Martin and Hosseini, Seyed Mehrdad and Kurpiers, Jona and Neher, Dieter}, title = {Decoding Charge Recombination through Charge Generation in Organic Solar Cells}, series = {Solar RRL}, volume = {3}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.201900184}, pages = {8}, year = {2019}, abstract = {The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states-being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor.}, language = {en} } @article{PeterGongPikovskij2019, author = {Peter, Franziska and Gong, Chen Chris and Pikovskij, Arkadij}, title = {Microscopic correlations in the finite-size Kuramoto model of coupled oscillators}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.032210}, pages = {6}, year = {2019}, abstract = {Supercritical Kuramoto oscillators with distributed frequencies can be separated into two disjoint groups: an ordered one locked to the mean field, and a disordered one consisting of effectively decoupled oscillators-at least so in the thermodynamic limit. In finite ensembles, in contrast, such clear separation fails: The mean field fluctuates due to finite-size effects and thereby induces order in the disordered group. This publication demonstrates this effect, similar to noise-induced synchronization, in a purely deterministic system. We start by modeling the situation as a stationary mean field with additional white noise acting on a pair of unlocked Kuramoto oscillators. An analytical expression shows that the cross-correlation between the two increases with decreasing ratio of natural frequency difference and noise intensity. In a deterministic finite Kuramoto model, the strength of the mean-field fluctuations is inextricably linked to the typical natural frequency difference. Therefore, we let a fluctuating mean field, generated by a finite ensemble of active oscillators, act on pairs of passive oscillators with a microscopic natural frequency difference between which we then measure the cross-correlation, at both super- and subcritical coupling.}, language = {en} } @article{MerchelGaertnerBeutneretal.2019, author = {Merchel, Silke and G{\"a}rtner, Andreas and Beutner, Sabrina and Bookhagen, Bodo and Chabilan, Amelie}, title = {Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz for Be-10 and Al-26 analysis}, series = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Section B, Beam interactions with materials and atoms}, volume = {455}, journal = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Section B, Beam interactions with materials and atoms}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-583X}, doi = {10.1016/j.nimb.2019.02.007}, pages = {293 -- 299}, year = {2019}, abstract = {The purity of the analysed samples (e.g. quartz) with respect to chemical composition and radionuclide contamination is essential for geomorphologic applications using so-called terrestrial cosmogenic nuclides (TCNs). To guarantee this, numerous cleaning and dissolution procedures have been developed. At the DREsden Accelerator Mass Spectrometry (DREAMS) facility, we also work on enhancing the chemical quartz-enrichment methodology from bulk rock and dissolution of quartz. Repeated exposure of the bulk material to acid mixtures (HCl/H2SiF6) at room temperature for cleaning and its monitoring by optical microscopy works for most quartz-rich samples. The quartz dissolution in HF under rather mild conditions (at room temperature on a shaker-table) has the advantage to leave difficult-to-dissolve minerals (e.g., tourmaline, zircon, rutile, sillimanite, kyanite, chromite, corundum), not separated by other physical methods before, as residue. Our comparison with a high-temperature dissolution method (in a microwave) indicates an additional amount of interfering elements, such as in average about 3 mg of Ti, more than 7 mg of Al, and about 22 mu g of Be (for 50 g SiO2), is added to the sample, hence showing the superiority of our mild method. This way, we reduce problems for chemistry and AMS, but also ensure better comparability to production rates of cleaner stoichiometric quartz from calibration sites.}, language = {en} } @article{PicoMitrovicaPerronetal.2019, author = {Pico, Tamara and Mitrovica, Jerry X. and Perron, J. Taylor and Ferrier, Ken L. and Braun, Jean}, title = {Influence of glacial isostatic adjustment on river evolution along the US mid-Atlantic coast}, series = {Earth \& planetary science letters}, volume = {522}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.06.026}, pages = {176 -- 185}, year = {2019}, abstract = {Long-term river evolution depends partly on crustal deformation, which shapes the topography crossed by rivers. On glacial timescales, ice-sheet growth and decay can produce crustal vertical motion of ∼10 mm/yr resulting from the solid Earth's adjustment to variations in ice and water loads, comparable to tectonically-driven rates in the most rapidly uplifting mountains on Earth. This process of glacial isostatic adjustment (GIA) can influence river courses and drainage basins substantially, particularly near former ice margins. We explore the extent to which GIA influenced the evolution of rivers along the United States east coast during the last glacial cycle. We compute gravitationally self-consistent GIA responses that incorporate recent constraints on the Laurentide Ice Sheet history through the last glacial build-up phase, and we connect the predicted variations in topography to abrupt changes in river dynamics recorded in the Hudson, Delaware, Susquehanna, and Potomac Rivers from 40 ka to present. To the extent that increases in sediment transport capacity imply increases in river incision rate, the GIA-driven changes in slope and drainage area are consistent with episodes of erosion and sedimentation observed in the Hudson, Delaware, and Potomac Rivers, but inconsistent with the observed accelerated river incision in the Susquehanna River at 30-14 ka. These analyses add to a growing body of evidence showing that GIA strongly influences river evolution over millennial timescales.}, language = {en} } @article{CastilloShpritsGanushkinaetal.2019, author = {Castillo, Angelica M. and Shprits, Yuri and Ganushkina, Natalia and Drozdov, Alexander and Aseev, Nikita and Wang, Dedong and Dubyagin, Stepan}, title = {Simulations of the inner magnetospheric energetic electrons using the IMPTAM-VERB coupled model}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {191}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2019.05.014}, pages = {17}, year = {2019}, abstract = {In this study, we present initial results of the coupling between the Inner Magnetospheric Particle Transport and Acceleration Model (IMPTAM) and the Versatile Electron Radiation Belt (VERB-3D) code. IMPTAM traces electrons of 10-100 keV energies from the plasma sheet (L = 9 Re) to inner L-shell regions. The flux evolution modeled by IMPTAM is used at the low energy and outer L* computational boundaries of the VERB code (assuming a dipole approximation) to perform radiation belt simulations of energetic electrons. The model was tested on the March 17th, 2013 storm, for a six-day period. Four different simulations were performed and their results compared to satellites observations from Van Allen probes and GOES. The coupled IMPTAM-VERB model reproduces evolution and storm-time features of electron fluxes throughout the studied storm in agreement with the satellite data (within similar to 0.5 orders of magnitude). Including dynamics of the low energy population at L* = 6.6 increases fluxes closer to the heart of the belt and has a strong impact in the VERB simulations at all energies. However, inclusion of magnetopause losses leads to drastic flux decreases even below L* = 3. The dynamics of low energy electrons (max. 10s of keV) do not affect electron fluxes at energies >= 900 keV. Since the IMPTAM-VERB coupled model is only driven by solar wind parameters and the Dst and Kp indexes, it is suitable as a forecasting tool. In this study, we demonstrate that the estimation of electron dynamics with satellite-data-independent models is possible and very accurate.}, language = {en} } @article{SahaOwenOrretal.2019, author = {Saha, Sourav and Owen, Lewis A. and Orr, Elizabeth N. and Caffee, Marc W.}, title = {High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {220}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.07.021}, pages = {372 -- 400}, year = {2019}, abstract = {Holocene glacial chronostratigraphies in glaciated valleys spread throughout the Himalayan-Tibetan orogen, including the Himalaya, Tibet, Pamir, and Tian Shan, are developed using a landsystems approach, detailed geomorphic mapping, and new and published Be-10 surface exposure dating. New studies in the Kulti valley of Lahul and the Parkachik valley of the Nun Kun massif of the Himalaya of northern India define three glacier advances at similar to 14.7, 12.2, 0.5 ka, in addition to one historically dated late 19th Century advance in the Kulti valley, and one Late Holocene advance at similar to 0.2 ka in the Parkachik valley. Three major climatic groups (subdivided into five climatic zones) are defined across the orogen using Cluster Analysis (CA) and Principal Component Analysis (PCA) to identify glaciated regions with comparable climatic characteristics to evaluate the timing, and extent of Holocene glacier advances across these regions. Our regional analyses across the Himalayan-Tibetan orogen suggest at least one Lateglacial (similar to 15.3-11.8 ka) and five Himalayan-Tibetan Holocene glacial stages (HTHS) at similar to 11.5-9.5, similar to 8.8-7.7, similar to 7.0-3.2, similar to 2.3-1.0, and <1 ka. The extent (amplitude) of glacier advances in 77 glaciated valleys is reconstructed and defined using equilibrium-line altitudes (ELAs). Modern glacier hypsometries are also assessed to help explain the intra-regional variations in glacier amplitudes during each regional glacier advance. A linear inverse glacier flow model is used to decipher the net changes in temperature (Delta T) between periods of reconstructed regional glacier advances in 66 glaciated valleys across different climatic regions throughout the orogen. The Be-10, ELAs, and Delta T data suggest enhanced monsoonal and increased precipitation during the Early Holocene, followed by relative cooling and increased aridity during the Mid- and Late Holocene that influenced glaciation. The sublimation-dominated cold-based glaciers in the northern regions of Himalayan-Tibetan orogen are more affected during these shifts in climate than the temperate glaciers in the south. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LatourDorschHeber2019, author = {Latour, Marilyn and Dorsch, Matti and Heber, Ulrich}, title = {Heavy metal enrichment in the intermediate He-sdOB pulsator Feige 46}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {629}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936247}, pages = {12}, year = {2019}, abstract = {The intermediate He-enriched hot subdwarf star Feige 46 was recently reported as the second member of the V366 Aqr (or He-sdOBV) pulsating class. Feige 46 is very similar to the prototype of the class, LS IV-14 degrees 116, not only in terms of pulsational properties, but also in terms of atmospheric parameters and kinematic properties. LS IV-14 degrees 116 is additionally characterized by a very peculiar chemical composition, with extreme overabundances of the trans-iron elements Ge, Sr, Y, and Zr. We investigate the possibility that the similarity between the two pulsators extends to their chemical composition. We retrieved archived optical and UV spectroscopic observations of Feige 46 and performed an abundance analysis using model atmospheres and synthetic spectra computed with TLUSTY and SYNSPEC. In total, we derived abundances for 16 elements and provide upper limits for four additional elements. Using absorption lines in the optical spectrum of the star we measure an enrichment of more than 10 000x solar for yttrium and zirconium. The UV spectrum revealed that strontium is equally enriched. Our results confirm that Feige 46 is not only a member of the now growing group of heavy metal subdwarfs, but also has an abundance pattern that is remarkably similar to that of LS IV-14 degrees 116.}, language = {en} } @article{TeomyMetzler2019, author = {Teomy, Eial and Metzler, Ralf}, title = {Transport in exclusion processes with one-step memory: density dependence and optimal acceleration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {38}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ab37e4}, pages = {19}, year = {2019}, abstract = {We study a lattice gas of persistent walkers, in which each site is occupied by at most one particle and the direction each particle attempts to move to depends on its last step. We analyse the mean squared displacement (MSD) of the particles as a function of the particle density and their persistence (the tendency to continue moving in the same direction). For positive persistence the MSD behaves as expected: it increases with the persistence and decreases with the density. However, for strong anti-persistence we find two different regimes, in which the dependence of the MSD on the density is non-monotonic. For very strong anti-persistence there is an optimal density at which the MSD reaches a maximum. In an intermediate regime, the MSD as a function of the density exhibits both a minimum and a maximum, a phenomenon which has not been observed before. We derive a mean-field theory which qualitatively explains this behaviour.}, language = {en} } @article{RatzloffBarlowKupferetal.2019, author = {Ratzloff, Jeffrey K. and Barlow, Brad N. and Kupfer, Thomas and Corcoran, Kyle A. and Geier, Stephan and Bauer, Evan and Corbett, Henry T. and Howard, Ward S. and Glazier, Amy and Law, Nicholas M.}, title = {EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab3727}, pages = {12}, year = {2019}, abstract = {We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 +/- 0.05M(circle dot)) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 +/- 0.06M(circle dot)) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2\% of WDs are thought to be less than 0.3 M-circle dot), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (approximate to 0.2R(circle dot)) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T-eff = 18,500 +/- 500 K), and surface gravity (log(g) = 4.96 +/- 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T-eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.}, language = {en} } @article{NorellEckertVanKuikenetal.2019, author = {Norell, Jesper and Eckert, Sebastian and Van Kuiken, Benjamin E. and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {151}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5109840}, pages = {12}, year = {2019}, abstract = {The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer.}, language = {en} } @article{SchlemmLevermann2019, author = {Schlemm, Tanja and Levermann, Anders}, title = {A simple stress-based cliff-calving law}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-13-2475-2019}, pages = {2475 -- 2488}, year = {2019}, abstract = {Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than approximate to 100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs. To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions.}, language = {en} } @article{RuedigerKuekerKapylaetal.2019, author = {R{\"u}diger, G{\"u}nther and K{\"u}ker, Manfred and Kapyla, P. J. and Strassmeier, Klaus G.}, title = {Antisolar differential rotation of slowly rotating cool stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935280}, pages = {9}, year = {2019}, abstract = {Rotating stellar convection transports angular momentum towards the equator, generating the characteristic equatorial acceleration of the solar rotation while the radial flux of angular momentum is always inwards. New numerical box simulations for the meridional cross-correlation < u(theta)u(phi)>, however, reveal the angular momentum transport towards the poles for slow rotation and towards the equator for fast rotation. The explanation is that for slow rotation a negative radial gradient of the angular velocity always appears, which in combination with a so-far neglected rotation-induced off-diagonal eddy viscosity term nu(perpendicular to) provides "antisolar rotation" laws with a decelerated equator Similarly, the simulations provided positive values for the rotation-induced correlation < u(r)u(theta)>, which is relevant for the resulting latitudinal temperature profiles (cool or warm poles) for slow rotation and negative values for fast rotation. Observations of the differential rotation of slowly rotating stars will therefore lead to a better understanding of the actual stress-strain relation, the heat transport, and the underlying model of the rotating convection.}, language = {en} } @article{MackLaquaiMuelleretal.2019, author = {Mack, Daniel Emil and Laquai, Rene and Mueller, Bernd and Helle, Oliver and Sebold, Doris and Vassen, Robert and Bruno, Giovanni}, title = {Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing}, series = {Journal of the American Ceramic Society}, volume = {102}, journal = {Journal of the American Ceramic Society}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0002-7820}, doi = {10.1111/jace.16465}, pages = {6163 -- 6175}, year = {2019}, abstract = {Degradation of thermal barrier coatings (TBCs) in gas-turbine engines due to calcium-magnesium-aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X-ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria-stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer.}, language = {en} } @article{IwamotoAmanoHoshinoetal.2019, author = {Iwamoto, Masanori and Amano, Takanobu and Hoshino, Masahiro and Matsumoto, Yosuke and Niemiec, Jacek and Ligorini, Arianna and Kobzar, Oleh and Pohl, Martin}, title = {Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab4265}, pages = {6}, year = {2019}, abstract = {We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may operate in high-energy astrophysical objects.}, language = {en} } @article{RaddiHollandsKoesteretal.2019, author = {Raddi, Roberto and Hollands, M. A. and Koester, D. and Hermes, J. J. and Gansicke, B. T. and Heber, Ulrich and Shen, Ken J. and Townsley, D. M. and Pala, Anna Francesca and Reding, J. S. and Toloza, O. F. and Pelisoli, Ingrid Domingos and Geier, Stephan and Fusillo, Nicola Pietro Gentile and Munari, Ullisse and Strader, J.}, title = {Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1618}, pages = {1489 -- 1508}, year = {2019}, abstract = {We report the discovery of three stars that, along with the prototype LP 40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ONe-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20 and 0.28M(circle dot) and between 0.16 and 0.60 R-circle dot, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that similar to 20 LP 40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP 40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions.}, language = {en} } @article{LoeblingRauchBertolamiMilleretal.2019, author = {L{\"o}bling, Lisa and Rauch, Thomas and Bertolami Miller, Marcelo Miguel and Todt, Helge Tobias and Friederich, F. and Ziegler, M. and Werner, Klaus and Kruk, J. W.}, title = {Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC7094}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1994}, pages = {1054 -- 1071}, year = {2019}, abstract = {Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the Herich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H approximate to 20 per cent by mass (AFTP), approximate to 1 per cent (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of T-eff = 115 000 +/- 5 000K and determine surface gravities of log (g /(cm s(-2))) = 5.6 +/- 0.1 for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of 0.57(-0.04)(+0.07)M(circle dot) and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of 0.25 +/- 0.03 and 0.15 +/- 0.03, respectively, and an Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution time-scales expected from the AFTP scenario and alternatives should be explored.}, language = {en} } @article{SahaOwenOrretal.2019, author = {Saha, Sourav and Owen, Lewis A. and Orr, Elizabeth N. and Caffee, Marc W.}, title = {Cosmogenic Be-10 and equilibrium-line altitude dataset of Holocene glacier advances in the Himalayan-Tibetan orogen}, series = {Data in brief}, volume = {26}, journal = {Data in brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2019.104412}, pages = {13}, year = {2019}, abstract = {A comprehensive analysis of the variable temporal and spatial responses of tropical-subtropical high-altitude glaciers to climate change is critical for successful model predictions and environmental risk assessment in the Himalayan-Tibetan orogen. High-frequency Holocene glacier chronostratigraphies are therefore reconstructed in 79 glaciated valleys across the orogen using 519 published and 16 new terrestrial cosmogenic 10Be exposure age dataset. Published 10Be ages are compiled only for moraine boulders (excluding bedrock ages). These ages are recalculated using the latest ICE-D production rate calibration database and the scaling scheme models. Outliers for the individual moraine are detected using the Chauvenet's criterion. In addition, past equilibrium-line altitudes (ELAs) are determined using the area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance. The modern maximum elevations of lateral moraines (MELM) are also used to estimate modern ELAs and as an independent check on mean ELAs derived using the above three methods. These data may serve as an essential archive for future studies focusing on the cryospheric and environmental changes in the Himalayan-Tibetan orogen. A more comprehensive analysis of the published and new 10Be ages and ELA results and a list of references are presented in Saha et al. (2019, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372-400).}, language = {en} } @article{TeomyMetzler2019, author = {Teomy, Eial and Metzler, Ralf}, title = {Correlations and transport in exclusion processes with general finite memory}, series = {Journal of statistical mechanics: theory and experiment}, volume = {2019}, journal = {Journal of statistical mechanics: theory and experiment}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/ab47fb}, pages = {31}, year = {2019}, language = {en} } @article{PalyulinBlackburnLomholtetal.2019, author = {Palyulin, Vladimir V. and Blackburn, George and Lomholt, Michael A. and Watkins, Nicholas W. and Metzler, Ralf and Klages, Rainer and Chechkin, Aleksei V.}, title = {First passage and first hitting times of Levy flights and Levy walks}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab41bb}, pages = {23}, year = {2019}, abstract = {For both L{\´e}vy flight and L{\´e}vy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For L{\´e}vy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the L{\´e}vy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.}, language = {en} } @article{MeiKochovskiRoaetal.2019, author = {Mei, Shilin and Kochovski, Zdravko and Roa, Rafael and Gu, Sasa and Xu, Xiaohui and Yu, Hongtao and Dzubiella, Joachim and Ballauff, Matthias and Lu, Yan}, title = {Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {1}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0314-9}, pages = {16}, year = {2019}, abstract = {Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.}, language = {en} } @article{FoxRichterAshleyetal.2019, author = {Fox, Andrew J. and Richter, Philipp and Ashley, Trisha and Heckman, Timothy M. and Lehner, Nicolas and Werk, Jessica K. and Bordoloi, Rongmon and Peeples, Molly S.}, title = {The Mass Inflow and Outflow Rates of the Milky Way}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {884}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab40ad}, pages = {7}, year = {2019}, abstract = {We present new calculations of the mass inflow and outflow rates around the Milky Way (MW), derived from a catalog of ultraviolet metal-line high-velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic standard of rest (GSR) reference frame, identifying inflowing (vGSR.<.0 km s(-1)) and outflowing (vGSR > 0 km s(-1)) populations, and using observational constraints on the distance, metallicity, dust content, covering fractions, and total silicon column density of each population. After removing HVCs associated with the Magellanic Stream and the Fermi Bubbles, we find inflow and outflow rates in cool (T similar to 10(4) K) ionized gas of dM(in)/dt greater than or similar to.(0.53 +/- 0.23)(d/12 kpc)(Z/0.2Z(circle dot))-1M(circle dot) yr(-1) and dM(out)/dt greater than or similar to (0.16 +/- 0.07)(d/12 kpc)(Z/0.5Z(circle dot))M--1(circle dot) yr(-1). The apparent excess of inflowing over outflowing gas suggests that the MW is currently in an inflow-dominated phase, but the presence of substantial mass flux in both directions supports a Galactic fountain model, in which gas is constantly recycled between the disk and the halo. We also find that the metal flux in both directions (in and out) is indistinguishable. By comparing the outflow rate to the Galactic star formation rate, we present the first estimate of the mass loading factor (eta(HVC)) of the disk-wide MW wind, finding eta(HVC) greater than or similar to (0.10 +/- 0.06)(d/12 kpc)(Z/0.5Z(circle dot))(-1). Including the contributions from low- and intermediatevelocity clouds and from hot gas would increase these inflow and outflow estimates.}, language = {en} } @article{LatourHusserGiesersetal.2019, author = {Latour, Marlyn and Husser, Tim Oliver and Giesers, Benjamin David and Kamann, S. and G{\"o}ttgens, Fabian and Dreizler, Stefan and Brinchmann, Jan and Bastian, Nate and Wendt, Martin and Weilbacher, Peter Michael and Molinski, N. S.}, title = {A stellar census in globular clusters with MUSE: multiple populations chemistry in NGC 2808 star star star}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936242}, pages = {14}, year = {2019}, abstract = {Context. Galactic globular clusters (GCs) are now known to host multiple populations displaying particular abundance variations. The different populations within a GC can be well distinguished following their position in the pseudo two-colors diagrams, also referred to as "chromosome maps". These maps are constructed using optical and near-UV photometry available from the Hubble Space Telescope (HST) UV survey of GCs. However, the chemical tagging of the various populations in the chromosome maps is hampered by the fact that HST photometry and elemental abundances are both only available for a limited number of stars. Aims. The spectra collected as part of the MUSE survey of globular clusters provide a spectroscopic counterpart to the HST photometric catalogs covering the central regions of GCs. In this paper, we use the MUSE spectra of 1115 red giant branch (RGB) stars in NGC 2808 to characterize the abundance variations seen in the multiple populations of this cluster. Methods. We used the chromosome map of NGC 2808 to divide the RGB stars into their respective populations. We then combined the spectra of all stars belonging to a given population, resulting in one high signal-to-noise ratio spectrum representative of each population. Results. Variations in the spectral lines of O, Na, Mg, and Al are clearly detected among four of the populations. In order to quantify these variations, we measured equivalent width differences and created synthetic populations spectra that were used to determine abundance variations with respect to the primordial population of the cluster. Our results are in good agreement with the values expected from previous studies based on high-resolution spectroscopy. We do not see any significant variations in the spectral lines of Ca, K, and Ba. We also do not detect abundance variations among the stars belonging to the primordial population of NGC 2808. Conclusions. We demonstrate that in spite of their low resolution, the MUSE spectra can be used to investigate abundance variations in the context of multiple populations.}, language = {en} } @article{GiesersKamannDreizleretal.2019, author = {Giesers, Benjamin David and Kamann, Sebastian and Dreizler, Stefan and Husser, Tim-Oliver and Askar, Abbas and G{\"o}ttgens, Fabian and Brinchmann, Jarle and Latour, Marilyn and Weilbacher, Peter Michael and Wendt, Martin and Roth, Martin M.}, title = {A stellar census in globular clusters with MUSE: Binaries in NGC 3201}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936203}, pages = {20}, year = {2019}, abstract = {We utilise multi-epoch MUSE spectroscopy to study binary stars in the core of the Galactic globular cluster NGC 3201. Our sample consists of 3553 stars with 54 883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing radial velocity variations based on the whole inhomogeneous radial velocity sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific cluster we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE field of view and enables us to deduce the underlying true binary frequency of (6.75 +/- 0.72)\% in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a large portion of primordial binaries. We can also confirm a radial increase in the binary fraction towards the cluster centre due to mass segregation. We discovered that in the core of NGC 3201 at least (57.5 +/- 7.9)\% of blue straggler stars are in a binary system. For the first time in a study of globular clusters, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven blue straggler stars and the connection to SX Phoenicis-type stars. We show evidence that two blue straggler formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole candidates with minimum masses (M sin i) of (7.68 +/- 0.50)M-circle dot, (4.4 +/- 2.8)M-circle dot, and refine the minimum mass estimate on the already published black hole to (4.53 +/- 0.21)M-circle dot, These black holes are consistent with an extensive black hole subsystem hosted by NGC 3201.}, language = {en} }