@phdthesis{Ayguel2015, author = {Ayg{\"u}l, Mesut}, title = {Pre-collisional accretion and exhumation along the southern Laurasian active margin, Central Pontides, Turkey}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416769}, school = {Universit{\"a}t Potsdam}, pages = {xxxiv, 206}, year = {2015}, abstract = {The Central Pontides is an accretionary-type orogenic area within the Alpine-Himalayan orogenic belt characterized by pre-collisional tectonic continental growth. The region comprises Mesozoic subduction-accretionary complexes and an accreted intra-oceanic arc that are sandwiched between the Laurasian active continental margin and Gondwana-derived the K{\i}r{\c{s}}ehir Block. The subduction-accretion complexes mainly consist of an Albian-Turonian accretionary wedge representing the Laurasian active continental margin. To the north, the wedge consists of slate/phyllite and metasandstone intercalation with recrystallized limestone, Na-amphibole-bearing metabasite (PT= 7-12 kbar and 400 ± 70 ºC) and tectonic slices of serpentinite representing accreted distal part of a large Lower Cretaceous submarine turbidite fan deposited on the Laurasian active continental margin that was subsequently accreted and metamorphosed. Raman spectra of carbonaceous material (RSCM) of the metapelitic rocks revealed that the metaflysch sequence consists of metamorphic packets with distinct peak metamorphic temperatures. The majority of the metapelites are low-temperature (ca. 330 °C) slates characterized by lack of differentiation of the graphite (G) and D2 defect bands. They possibly represent offscraped distal turbidites along the toe of the Albian accretionary wedge. The rest are phyllites that are characterized by slightly pronounced G band with D2 defect band occurring on its shoulder. Peak metamorphic temperatures of these phyllites are constrained to 370-385 °C. The phyllites are associated with a strip of incipient blueschist facies metabasites which are found as slivers within the offscraped distal turbidites. They possibly represent underplated continental metasediments together with oceanic crustal basalt along the basal d{\´e}collement. Tectonic emplacement of the underplated rocks into the offscraped distal turbidites was possibly achieved by out-of-sequence thrusting causing tectonic thickening and uplift of the wedge. 40Ar/39Ar phengite ages from the phyllites are ca. 100 Ma, indicating Albian subduction and regional HP metamorphism. The accreted continental metasediments are underlain by HP/LT metamorphic rocks of oceanic origin along an extensional shear zone. The oceanic metamorphic sequence mainly comprises tectonically thickened deep-seated eclogite to blueschist facies metabasites and micaschists. In the studied area, metabasites are epidote-blueschists locally with garnet (PT= 17 ± 1 kbar and 500 ± 40 °C). Lawsonite-blueschists are exposed as blocks along the extensional shear zone (PT= 14 ± 2 kbar and 370-440 °C). They are possibly associated with low shear stress regime of the initial stage of convergence. Close to the shear zone, the footwall micaschists consist of quartz, phengite, paragonite, chlorite, rutile with syn-kinematic albite porphyroblast formed by pervasive shearing during exhumation. These types of micaschists are tourmaline-bearing and their retrograde nature suggests high-fluid flux along shear zones. Peak metamorphic mineral assemblages are partly preserved in the chloritoid-micaschist farther away from the shear zone representing the zero strain domains during exhumation. Three peak metamorphic assemblages are identified and their PT conditions are constrained by pseudosections produced by Theriak-Domino and by Raman spectra of carbonaceous material: 1) garnet-chloritoid-glaucophane with lawsonite pseudomorphs (P= 17.5 ± 1 kbar, T: 390-450 °C) 2) chloritoid with glaucophane pseudomorphs (P= 16-18 kbar, T: 475 ± 40 °C) and 3) relatively high-Mg chloritoid (17\%) with jadeite pseudomorphs (P= 22-25 kbar; T: 440 ± 30 °C) in addition to phengite, paragonite, quartz, chlorite, rutile and apatite. The last mineral assemblage is interpreted as transformation of the chloritoid + glaucophane assemblage to chloritoid + jadeite paragenesis with increasing pressure. Absence of tourmaline suggests that the chloritoid-micaschist did not interact with B-rich fluids during zero strain exhumation. 40Ar/39Ar phengite age of a pervasively sheared footwall micaschist is constrained to 100.6 ± 1.3 Ma and that of a chloritoid-micaschist is constrained to 91.8 ± 1.8 Ma suggesting exhumation during on-going subduction with a southward younging of the basal accretion and the regional metamorphism. To the south, accretionary wedge consists of blueschist and greenschist facies metabasite, marble and volcanogenic metasediment intercalation. 40Ar/39Ar phengite dating reveals that this part of the wedge is of Middle Jurassic age partly overprinted during the Albian. Emplacement of the Middle Jurassic subduction-accretion complexes is possibly associated with obliquity of the Albian convergence. Peak metamorphic assemblages and PT estimates of the deep-seated oceanic metamorphic sequence suggest tectonic stacking within wedge with different depths of burial. Coupling and exhumation of the distinct metamorphic slices are controlled by decompression of the wedge possibly along a retreating slab. Structurally, decompression of the wedge is evident by an extensional shear zone and the footwall micaschists with syn-kinematic albite porphyroblasts. Post-kinematic garnets with increasing grossular content and pseudomorphing minerals within the chloritoid-micaschists also support decompression model without an extra heating. Thickening of subduction-accretionary complexes is attributed to i) significant amount of clastic sediment supply from the overriding continental domain and ii) deep level basal underplating by propagation of the d{\´e}collement along a retreating slab. Underplating by basal d{\´e}collement propagation and subsequent exhumation of the deep-seated subduction-accretion complexes are connected and controlled by slab rollback creating a necessary space for progressive basal accretion along the plate interface and extension of the wedge above for exhumation of the tectonically thickened metamorphic sequences. This might be the most common mechanism of the tectonic thickening and subsequent exhumation of deep-seated HP/LT subduction-accretion complexes. To the south, the Albian-Turonian accretionary wedge structurally overlies a low-grade volcanic arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed north of the İzmir-Ankara-Erzincan suture (İAES), separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metavolcanic rocks are stratigraphically overlain by recrystallized micritic limestone with rare volcanogenic metaclastic rocks. Two groups can be identified based on trace and rare earth element characteristics. The first group consists of basaltic andesite/andesite (BA1) and rhyolite with abundant cognate gabbroic xenoliths. It is characterized by relative enrichment of LREE with respect to HREE. The rocks are enriched in fluid mobile LILE, and strongly depleted in Ti and P reflecting fractionation of Fe-Ti oxides and apatite, which are found in the mafic cognate xenoliths. Abundant cognate gabbroic xenoliths and identical trace and rare earth elements compositions suggest that rhyolites and basaltic andesites/andesites (BA1) are cogenetic and felsic rocks were derived from a common mafic parental magma by fractional crystallization and accumulation processes. The second group consists only of basaltic andesites (BA2) with flat REE pattern resembling island arc tholeiites. Although enriched in LILE, this group is not depleted in Ti or P. Geochemistry of the metavolcanic rocks indicates supra-subduction volcanism evidenced by depletion of HFSE and enrichment of LILE. The arc sequence is sandwiched between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic m{\´e}lange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the K{\"o}sdağ Arc was intra-oceanic. This is in accordance with basaltic andesites (BA2) with island arc tholeiite REE pattern. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. Low-grade regional metamorphism of the intra-oceanic arc sequence is constrained 69.9 ± 0.4 Ma by 40Ar/39Ar dating on metamorphic muscovite from a metarhyolite indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. The youngest 40Ar/39Ar phengite age from the overlying subduction-accretion complexes is 92 Ma confirming southward younging of an accretionary-type orogenic belt. Hence, the arc sequence represents an intra-oceanic paleo-arc that formed above the sinking Tethyan slab and finally accreted to Laurasian active continental margin. Abrupt non-collisional termination of arc volcanism was possibly associated with southward migration of the arc volcanism similar to the Izu-Bonin-Mariana arc system. The intra-oceanic K{\"o}sdağ Arc is coeval with the obducted supra-subduction ophiolites in NW Turkey suggesting that it represents part of the presumed but missing incipient intra-oceanic arc associated with the generation of the regional supra-subduction ophiolites. Remnants of a Late Cretaceous intra-oceanic paleo-arc and supra-subduction ophiolites can be traced eastward within the Alp-Himalayan orogenic belt. This reveals that Late Cretaceous intra-oceanic subduction occurred as connected event above the sinking Tethyan slab. It resulted as arc accretion to Laurasian active margin and supra-subduction ophiolite obduction on Gondwana-derived terranes.}, language = {en} } @phdthesis{Darmawan2018, author = {Darmawan, Herlan}, title = {Morphometric changes at the Merapi lava dome between 2012 and 2017}, school = {Universit{\"a}t Potsdam}, pages = {134}, year = {2018}, language = {en} } @phdthesis{Ott2018, author = {Ott, Florian}, title = {Late Glacial and Holocene climate and environmental evolution in the southern Baltic lowlands derived from varved lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414805}, school = {Universit{\"a}t Potsdam}, pages = {xix, 241}, year = {2018}, abstract = {Holocene climate variability is generally characterized by low frequency changes than compared to the last glaciations including the Lateglacial. However, there is vast evidence for decadal to centennial scale oscillations and millennial scale climate trends, which are within and beyond a human lifetime perception, respectively. Within the Baltic realm, a transitional zone between oceanic and continental climate influence, the impact of Holocene and Lateglacial climate and environmental change is currently partly understood. This is mainly attributed to the scarcity of well-dated and high-resolution sediment records and to the lacking continuity of already investigated archives. The aim of this doctoral thesis is to reconstruct Holocene and Late Glacial climate variability on local to (over)regional scales based on varved (annually laminated) sediments from Lake Czechowskie down to annual resolution. This project was carried out within the Virtual Institute for Integrated Climate and Landscape Evolution Analyses (ICLEA) and funded by the Helmholtz Association and the Helmholtz Climate Initiative REKLIM (Regional Climate Change). ICLEA intended to gain a better understanding of climate variability and landscape evolution processes in the Northern Central European lowlands since the last deglaciation. REKLIM Topic 8 "Abrupt climate change derived from proxy data" aims at identifying spatiotemporal patterns of climate variability between e.g. higher and lower latitudes. The main aim of this thesis was (i) to establish a robust chronology based on a multiple dating approach for Lake Czechowskie covering the Late Glacial and Holocene and for the Trzechowskie palaeolake for the Lateglacial, respectively, (ii) to reconstruct past climatic and environmental conditions on centennial to multi-millennial time scales and (iii) to distinguish between local to regional different sediments responses to climate change. Addressing the first aim, the Lake Czechowskie chronology has been established by a multiple dating approach comprising information from varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains, biostratigraphy and 137Cs activity concentration measurements. Those independent age constraints covering the Lateglacial and the entire Holocene and have been further implemented in a Bayesian age model by using OxCal v.4.2. Thus, even within non-varved sediment intervals, robust chronological information has been used for absolute age determination. The identification of five cryptotephras, of which three are used as unambiguous isochrones, is furthermore a significant improvement of the Czechowskie chronology and currently unique for the Holocene within Poland. The first findings of coexisting early Holocene H{\"a}sseldalen and Askja-S cryptotephras within a varved sequence even allowed differential dating between both volcanic ashes and stimulated the discussion of revising the absolute ages of the Askja-S tephra. The Trzechowskie palaeolake chronology has been established by a multiple dating approach comprising varve counting, tephrochronology, AMS 14C dating of terrestrial plant remains and biostratigraphy, covers the Lateglacial period (Aller{\o}d and Younger Dryas) and has been implemented in OxCal v.4.2. Those age constraints allowed regional correlation to other high-resolution climate archives and identifying leads and lags of proxy responses at the onset of the Younger Dryas. The second aim has been accomplished by detailed micro-facies and geochemical analyses of the Czechowskie sediments for the entire Holocene. Thus, especially micro-facies changes had been linked to enhanced productivity at Lake Czechowskie. Most prominent changes have been recorded at 7.3, 6.5, 4.3 and 2.8 varve kyrs BP and are linked to a stepwise increasing influence of Atlantic air masses. Especially, the mid-Holocene change, which had been widely reported from palaeohydrological records in low latitudes, has been identified and linked to large scale reorganization of atmospheric circulation patterns. Thus, especially long-term changes of climatic and environmental boundary conditions are widely recorded by the Czechowskie sediments. The pronounced response to (multi)millennial scale changes is further corroborated by the lack of clear sediment responses to early Holocene centennial scale climate oscillations (e.g. the Preboreal Oscillation). However, decadal scale changes at Lake Czechowskie during the most recent period (last 140 years) have been investigated in a lake comparison study. To fulfill the third aim of the doctoral thesis, three lakes in close vicinity to each other have been investigated in order to better distinguish how local, site-specific parameters, may superimpose regional climate driven changes. All lakes haven been unambiguously linked by the Askja AD1875 cryptotephra and independent varve chronologies. As a result, climate warming has only been recorded by sedimentation changes at the smallest and best sheltered lake (Głęboczek), whereas the largest lake (Czechowskie) and the shallowest lake (Jelonek) showed attenuated and less clear sediment responses, respectively. The different responses have been linked to morphological lake characteristics (lake size and depth, catchment area). This study highlights the potential of high-resolution lake comparison for robust proxy based climate reconstructions. In summary, the doctoral thesis presents a high-resolution sediment record with an underlying age model, which is prerequisite for unprecedented age control down to annual resolution. Sediment proxy based climate reconstructions demonstrate the importance of the Czechowskie sediments for better understanding climate variability in the southern Baltic realm. Case studies showed the clear response on millennial time scale, while decadal scale fluctuations are either less well expressed or superimposed by local, site-specific parameters. The identification of volcanic ash layers is not only used for unambiguous isochrones, those are key tie lines for local to supra regional archive synchronization and establish the Lake Czechowskie as a key climate archive.}, language = {en} } @phdthesis{Platz2018, author = {Platz, Anna}, title = {Novel pre-stack data confinement and selection for magnetotelluric data processing and its application to data of the Eastern Karoo Basin, South Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415087}, school = {Universit{\"a}t Potsdam}, pages = {xx, 1131}, year = {2018}, abstract = {Magnetotellurics (MT) is a geophysical method that is able to image the electrical conductivity structure of the subsurface by recording time series of natural electromagnetic (EM) field variations. During the data processing these time series are divided into small segments and for each segment spectral values are computed which are typically averaged in a statistical manner to obtain MT transfer functions. Unfortunately, the presence of man-made EM noise sources often deteriorates a significant amount of the recorded time series resulting in disturbed transfer functions. Many advanced processing techniques, e.g. robust statistics, pre-stack data selection or remote reference, have been developed to tackle this problem. The first two techniques reduce the amount of outliers and noise in the data whereas the latter approach removes noise by using data from another MT station. However, especially in populated regions the data processing is still quite challenging even with these approaches. In this thesis, I present two novel pre-stack data confinement and selection criteria for the detection of outliers and noise affected data based on (i) a distance measure of each data segment with regard to the entire sample distribution and (ii) the evaluation of the magnetic polarisation direction of all segments. The first criterion is able to remove data points that scatter around the desired MT distribution and furthermore it can, under some circumstances, even reject complete data cluster originating from noise sources. The second criterion eliminates data points caused by a strongly polarised magnetic signal. Both criteria have been successfully applied to many stations with different noise contaminations showing that they can significantly improve the transfer function estimation. The novel criteria were used to evaluate a MT data set from the Eastern Karoo Basin in South Africa. The corresponding field experiment is part of an extensive research programme to collect information of the current e.g. geological setting in this region prior to a potential shale gas exploitation. The aim was to investigate whether a three-dimensional (3D) inversion of the newly measured data fosters a more realistic mapping of physical properties of the target horizon. For this purpose, a comprehensive 3D model was derived by using all available data. In a second step, I analysed parameters of the target horizon, e.g. its conductivity, that are proxies for physical properties such as thermal maturity and porosity.}, language = {en} } @phdthesis{Stolle2018, author = {Stolle, Amelie}, title = {Catastrophic Sediment Pulses in the Pokhara Valley, Nepal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413341}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 173}, year = {2018}, abstract = {Fluvial terraces, floodplains, and alluvial fans are the main landforms to store sediments and to decouple hillslopes from eroding mountain rivers. Such low-relief landforms are also preferred locations for humans to settle in otherwise steep and poorly accessible terrain. Abundant water and sediment as essential sources for buildings and infrastructure make these areas amenable places to live at. Yet valley floors are also prone to rare and catastrophic sedimentation that can overload river systems by abruptly increasing the volume of sediment supply, thus causing massive floodplain aggradation, lateral channel instability, and increased flooding. Some valley-fill sediments should thus record these catastrophic sediment pulses, allowing insights into their timing, magnitude, and consequences. This thesis pursues this theme and focuses on a prominent ~150 km2 valley fill in the Pokhara Valley just south of the Annapurna Massif in central Nepal. The Pokhara Valley is conspicuously broad and gentle compared to the surrounding dissected mountain terrain, and is filled with locally more than 70 m of clastic debris. The area's main river, Seti Khola, descends from the Annapurna Sabche Cirque at 3500-4500 m asl down to 900 m asl where it incises into this valley fill. Humans began to settle on this extensive fan surface in the 1750's when the Trans-Himalayan trade route connected the Higher Himalayas, passing Pokhara city, with the subtropical lowlands of the Terai. High and unstable river terraces and steep gorges undermined by fast flowing rivers with highly seasonal (monsoon-driven) discharge, a high earthquake risk, and a growing population make the Pokhara Valley an ideal place to study the recent geological and geomorphic history of its sediments and the implication for natural hazard appraisals. The objective of this thesis is to quantify the timing, the sedimentologic and geomorphic processes as well as the fluvial response to a series of strong sediment pulses. I report diagnostic sedimentary archives, lithofacies of the fan terraces, their geochemical provenance, radiocarbon-age dating and the stratigraphic relationship between them. All these various and independent lines of evidence show consistently that multiple sediment pulses filled the Pokhara Valley in medieval times, most likely in connection with, if not triggered by, strong seismic ground shaking. The geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation tied to the timing of three medieval Himalayan earthquakes in ~1100, 1255, and 1344 AD. Sediment provenance and calibrated radiocarbon-age data are the key to distinguish three individual sediment pulses, as these are not evident from their sedimentology alone. I explore various measures of adjustment and fluvial response of the river system following these massive aggradation pulses. By using proxies such as net volumetric erosion, incision and erosion rates, clast provenance on active river banks, geomorphic markers such as re-exhumed tree trunks in growth position, and knickpoint locations in tributary valleys, I estimate the response of the river network in the Pokhara Valley to earthquake disturbance over several centuries. Estimates of the removed volumes since catastrophic valley filling began, require average net sediment yields of up to 4200 t km-2 yr-1 since, rates that are consistent with those reported for Himalayan rivers. The lithological composition of active channel-bed load differs from that of local bedrock material, confirming that rivers have adjusted 30-50\% depending on data of different tributary catchments, locally incising with rates of 160-220 mm yr-1. In many tributaries to the Seti Khola, most of the contemporary river loads come from a Higher Himalayan source, thus excluding local hillslopes as sources. This imbalance in sediment provenance emphasizes how the medieval sediment pulses must have rapidly traversed up to 70 km downstream to invade the downstream reaches of the tributaries up to 8 km upstream, thereby blocking the local drainage and thus reinforcing, or locally creating new, floodplain lakes still visible in the landscape today. Understanding the formation, origin, mechanism and geomorphic processes of this valley fill is crucial to understand the landscape evolution and response to catastrophic sediment pulses. Several earthquake-triggered long-runout rock-ice avalanches or catastrophic dam burst in the Higher Himalayas are the only plausible mechanisms to explain both the geomorphic and sedimentary legacy that I document here. In any case, the Pokhara Valley was most likely hit by a cascade of extremely rare processes over some two centuries starting in the early 11th century. Nowhere in the Himalayas do we find valley fills of comparable size and equally well documented depositional history, making the Pokhara Valley one of the most extensively dated valley fill in the Himalayas to date. Judging from the growing record of historic Himalayan earthquakes in Nepal that were traced and dated in fault trenches, this thesis shows that sedimentary archives can be used to directly aid reconstructions and predictions of both earthquake triggers and impacts from a sedimentary-response perspective. The knowledge about the timing, evolution, and response of the Pokhara Valley and its river system to earthquake triggered sediment pulses is important to address the seismic and geomorphic risk for the city of Pokhara. This thesis demonstrates how geomorphic evidence on catastrophic valley infill can help to independently verify paleoseismological fault-trench records and may initiate re-thinking on post-seismic hazard assessments in active mountain regions.}, language = {en} } @phdthesis{Nitze2017, author = {Nitze, Ingmar}, title = {Remote sensing of rapid permafrost landscape dynamics}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2017}, language = {en} } @phdthesis{Irrgang2017, author = {Irrgang, Anna Maria}, title = {Temporal and spatial dynamics of Arctic coastal changes and the resulting impacts: Yukon Territory, Canada}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2017}, language = {en} } @phdthesis{Murawski2017, author = {Murawski, Aline}, title = {Trends in precipitation over Germany and the Rhine basin related to changes in weather patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412725}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2017}, abstract = {Niederschlag als eine der wichtigsten meteorologischen Gr{\"o}ßen f{\"u}r Landwirtschaft, Wasserversorgung und menschliches Wohlbefinden hat schon immer erh{\"o}hte Aufmerksamkeit erfahren. Niederschlagsmangel kann verheerende Auswirkungen haben, wie z.B. Missernten und Wasserknappheit. {\"U}berm{\"a}ßige Niederschl{\"a}ge andererseits bergen jedoch ebenfalls Gefahren in Form von Hochwasser oder Sturzfluten und wiederum Missernten. Daher wurde viel Arbeit in die Detektion von Niederschlags{\"a}nderungen und deren zugrundeliegende Prozesse gesteckt. Insbesondere angesichts von Klimawandel und unter Ber{\"u}cksichtigung des Zusammenhangs zwischen Temperatur und atmosph{\"a}rischer Wasserhaltekapazit{\"a}t, ist großer Bedarf an Forschung zum Verst{\"a}ndnis der Auswirkungen von Klimawandel auf Niederschlags{\"a}nderungen gegeben. Die vorliegende Arbeit hat das Ziel, vergangene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Variablen zu verstehen. F{\"u}r verschiedene Zeitr{\"a}ume wurden Tendenzen gefunden und mit entsprechenden Ver{\"a}nderungen in der großskaligen atmosph{\"a}rischen Zirkulation in Zusammenhang gebracht. Die Ergebnisse dieser Arbeit k{\"o}nnen als Grundlage f{\"u}r die Attributierung von Hochwasserver{\"a}nderungen zu Klimawandel genutzt werden. Die Annahmen f{\"u}r die Maßstabsverkleinerung („Downscaling") der Daten von großskaligen Zirkulationsmodellen auf die lokale Skala wurden hier getestet und verifziert. In einem ersten Schritt wurden Niederschlagsver{\"a}nderungen in Deutschland analysiert. Dabei lag der Fokus nicht nur auf Niederschlagssummen, sondern auch auf Eigenschaften der statistischen Verteilung, {\"U}bergangswahrscheinlichkeiten als Maß f{\"u}r Trocken- und Niederschlagsperioden und Extremniederschlagsereignissen. Den r{\"a}umlichen Fokus auf das Rheineinzugsgebiet, das gr{\"o}ßte Flusseinzugsgebiet Deutschlands und einer der Hauptwasserwege Europas, verlagernd, wurden nachgewiesene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Gr{\"o}ßen in Bezug zu einer „optimierten" Wetterlagenklassifikation analysiert. Die Wetterlagenklassifikation wurde unter der Maßgabe entwickelt, die Varianz des lokalen Klimas bestm{\"o}glich zu erkl{\"a}ren. Die letzte hier behandelte Frage dreht sich darum, ob die beobachteten Ver{\"a}nderungen im lokalen Klima eher H{\"a}ufigkeits{\"a}nderungen der Wetterlagen zuzuordnen sind oder einer Ver{\"a}nderung der Wetterlagen selbst. Eine gebr{\"a}uchliche Annahme f{\"u}r einen Downscaling-Ansatz mit Hilfe von Wetterlagen und einem stochastischen Wettergenerator ist, dass Klimawandel sich allein durch eine Ver{\"a}nderung der H{\"a}ufigkeit von Wetterlagen ausdr{\"u}ckt, die Eigenschaften der Wetterlagen dabei jedoch konstant bleiben. Diese Annahme wurde {\"u}berpr{\"u}ft und die F{\"a}higkeit der neuesten Generation von Zirkulationsmodellen, diese Wetterlagen zu reproduzieren, getestet. Niederschlagsver{\"a}nderungen in Deutschland im Zeitraum 1951-2006 lassen sich zusammenfassen als negativ im Sommer und positiv in allen anderen Jahreszeiten. Verschiedene Niederschlagscharakteristika best{\"a}tigen die Tendenz in den Niederschlagssummen: w{\"a}hrend mittlere und extreme Niederschlagstageswerte im Winter zugenommen haben, sind auch zusammenh{\"a}ngende Niederschlagsperioden l{\"a}nger geworden (ausgedr{\"u}ckt als eine gestiegene Wahrscheinlichkeit f{\"u}r einen Tag mit Niederschlag gefolgt von einem weiteren nassen Tag). Im Sommer wurde das Gegenteil beobachtet: gesunkene Niederschlagssummen, untermauert von verringerten Mittel- und Extremwerten und l{\"a}ngeren Trockenperioden. Abseits dieser allgemeinen Zusammenfassung f{\"u}r das gesamte Gebiet Deutschlands, ist die r{\"a}umliche Verteilung von Niederschlagsver{\"a}nderungen deutlich heterogener. Vermehrter Niederschlag im Winter wurde haupts{\"a}chlich im Nordwesten und S{\"u}dosten Deutschlands beobachtet, w{\"a}hrend im Fr{\"u}hling die st{\"a}rksten Ver{\"a}nderungen im Westen und im Herbst im S{\"u}den aufgetreten sind. Das saisonale Bild wiederum l{\"o}st sich f{\"u}r die zugeh{\"o}rigen Monate auf, z.B. setzt sich der Anstieg im Herbstniederschlag aus deutlich vermehrtem Niederschlag im S{\"u}dwesten im Oktober und im S{\"u}dosten im November zusammen. Diese Ergebnisse betonen die starken r{\"a}umlichen Zusammenh{\"a}nge der Niederschlags{\"a}nderungen. Der n{\"a}chste Schritt hinsichtlich einer Zuordnung von Niederschlagsver{\"a}nderungen zu {\"A}nderungen in großskaligen Zirkulationsmustern, war die Ableitung einer Wetterlagenklassifikation, die die betrachteten lokalen Klimavariablen hinreichend stratifizieren kann. Fokussierend auf Temperatur, Globalstrahlung und Luftfeuchte zus{\"a}tzlich zu Niederschlag, wurde eine Klassifikation basierend auf Luftdruck, Temperatur und spezifischer Luftfeuchtigkeit als am besten geeignet erachtet, die Varianz der lokalen Variablen zu erkl{\"a}ren. Eine vergleichsweise hohe Anzahl von 40 Wetterlagen wurde ausgew{\"a}hlt, die es erlaubt, typische Druckmuster durch die zus{\"a}tzlich verwendete Temperaturinformation einzelnen Jahreszeiten zuzuordnen. W{\"a}hrend die F{\"a}higkeit, Varianz im Niederschlag zu erkl{\"a}ren, relativ gering ist, ist diese deutlich besser f{\"u}r Globalstrahlung und nat{\"u}rlich Temperatur. Die meisten der aktuellen Zirkulationsmodelle des CMIP5-Ensembles sind in der Lage, die Wetterlagen hinsichtlich H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz hinreichend gut zu reproduzieren. Schließlich wurden dieWetterlagen bez{\"u}glich Ver{\"a}nderungen in ihrer H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz, sowie der Wetterlagen-spezifischen Niederschl{\"a}ge und Temperatur, untersucht. Um Unsicherheiten durch die Wahl eines bestimmten Analysezeitraums auszuschließen, wurden alle m{\"o}glichen Zeitr{\"a}ume mit mindestens 31 Jahren im Zeitraum 1901-2010 untersucht. Dadurch konnte die Annahme eines konstanten Zusammenhangs zwischen Wetterlagen und lokalem Wetter gr{\"u}ndlich {\"u}berpr{\"u}ft werden. Es wurde herausgefunden, dass diese Annahme nur zum Teil haltbar ist. W{\"a}hrend Ver{\"a}nderungen in der Temperatur haupts{\"a}chlich auf Ver{\"a}nderungen in der Wetterlagenh{\"a}ufigkeit zur{\"u}ckzuf{\"u}hren sind, wurde f{\"u}r Niederschlag ein erheblicher Teil von Ver{\"a}nderungen innerhalb einzelner Wetterlagen gefunden. Das Ausmaß und sogar das Vorzeichen der Ver{\"a}nderungen h{\"a}ngt hochgradig vom untersuchten Zeitraum ab. Die H{\"a}ufigkeit einiger Wetterlagen steht in direkter Beziehung zur langfristigen Variabilit{\"a}t großskaliger Zirkulationsmuster. Niederschlagsver{\"a}nderungen variieren nicht nur r{\"a}umlich, sondern auch zeitlich - Aussagen {\"u}ber Tendenzen sind nur in Bezug zum jeweils untersuchten Zeitraum g{\"u}ltig. W{\"a}hrend ein Teil der Ver{\"a}nderungen auf {\"A}nderungen der großskaligen Zirkulation zur{\"u}ckzuf{\"u}hren ist, gibt es auch deutliche Ver{\"a}nderungen innerhalb einzelner Wetterlagen. Die Ergebnisse betonen die Notwendigkeit f{\"u}r einen sorgf{\"a}ltigen Nachweis von Ver{\"a}nderungen m{\"o}glichst verschiedene Zeitr{\"a}ume zu untersuchen und mahnen zur Vorsicht bei der Anwendung von Downscaling-Ans{\"a}tzen mit Hilfe von Wetterlagen, da diese die Auswirkungen von Klimaver{\"a}nderungen durch das Vernachl{\"a}ssigen von Wetterlagen-internen Ver{\"a}nderungen falsch einsch{\"a}tzen k{\"o}nnten.}, language = {en} } @phdthesis{Golly2017, author = {Golly, Antonius}, title = {Formation and evolution of channel steps and their role for sediment dynamics in a steep mountain stream}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411728}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2017}, abstract = {Steep mountain channels are an important component of the fluvial system. On geological timescales, they shape mountain belts and counteract tectonic uplift by erosion. Their channels are strongly coupled to hillslopes and they are often the main source of sediment transported downstream to low-gradient rivers and to alluvial fans, where commonly settlements in mountainous areas are located. Hence, mountain streams are the cause for one of the main natural hazards in these regions. Due to climate change and a pronounced populating of mountainous regions the attention given to this threat is even growing. Although quantitative studies on sediment transport have significantly advanced our knowledge on measuring and calibration techniques we still lack studies of the processes within mountain catchments. Studies examining the mechanisms of energy and mass exchange on small temporal and spatial scales in steep streams remain sparse in comparison to low-gradient alluvial channels. In the beginning of this doctoral project, a vast amount of experience and knowledge of a steep stream in the Swiss Prealps had to be consolidated in order to shape the principal aim of this research effort. It became obvious, that observations from within the catchment are underrepresented in comparison to experiments performed at the catchment's outlet measuring fluxes and the effects of the transported material. To counteract this imbalance, an examination of mass fluxes within the catchment on the process scale was intended. Hence, this thesis is heavily based on direct field observations, which are generally rare in these environments in quantity and quality. The first objective was to investigate the coupling of the channel with surrounding hillslopes, the major sources of sediment. This research, which involved the monitoring of the channel and adjacent hillslopes, revealed that alluvial channel steps play a key role in coupling of channel and hillslopes. The observations showed that hillslope stability is strongly associated with the step presence and an understanding of step morphology and stability is therefore crucial in understanding sediment mobilization. This finding refined the way we think about the sediment dynamics in steep channels and motivated continued research of the step dynamics. However, soon it became obvious that the technological basis for developing field tests and analyzing the high resolution geometry measured in the field was not available. Moreover, for many geometrical quantities in mountain channels definitions and a clear scientific standard was not available. For example, these streams are characterized by a high spatial variability of the channel banks, preventing straightforward calculations of the channel width without a defined reference. Thus, the second and inevitable part of this thesis became the development and evaluation of scientific tools in order to investigate the geometrical content of the study reach thoroughly. The developed framework allowed the derivation of various metrics of step and channel geometry which facilitated research on the a large data set of observations of channel steps. In the third part, innovative, physically-based metrics have been developed and compared to current knowledge on step formation, suggested in the literature. With this analyses it could be demonstrated that the formation of channel steps follow a wide range of hydraulic controls. Due to the wide range of tested parameters channel steps observed in a natural stream were attributed to different mechanisms of step formation, including those based on jamming and those based on key-stones. This study extended our knowledge on step formation in a steep stream and harmonized different, often time seen as competing, processes of step formation. This study was based on observations collected at one point in time. In the fourth part of this project, the findings of the snap-shot observations were extended in the temporal dimension and the derived concepts have been utilized to investigate reach-scale step patterns in response to large, exceptional flood events. The preliminary results of this work based on the long-term analyses of 7 years of long profile surveys showed that the previously observed channel-hillslope mechanism is the responsible for the short-term response of step formation. The findings of the long-term analyses of step patterns drew a bow to the initial observations of a channel-hillslope system which allowed to join the dots in the dynamics of steep stream. Thus, in this thesis a broad approach has been chosen to gain insights into the complex system of steep mountain rivers. The effort includes in situ field observations (article I), the development of quantitative scientific tools (article II), the reach-scale analyses of step-pool morphology (article III) and its temporal evolution (article IV). With this work our view on the processes within the catchment has been advanced towards a better mechanistic understanding of these fluvial system relevant to improve applied scientific work.}, language = {en} } @phdthesis{Theuring2017, author = {Theuring, Philipp Christian}, title = {Suspended sediments in the Kharaa River, sources and impacts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410550}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2017}, abstract = {Anthropogenically amplified erosion leads to increased fine-grained sediment input into the fluvial system in the 15.000 km2 Kharaa River catchment in northern Mongolia and constitutes a major stressing factor for the aquatic ecosystem. This study uniquely combines the application of intensive monitoring, source fingerprinting and catchment modelling techniques to allow for the comparison of the credibility and accuracy of each single method. High-resolution discharge data were used in combination with daily suspended solid measurements to calculate the suspended sediment budget and compare it with estimations of the sediment budget model SedNet. The comparison of both techniques showed that the development of an overall sediment budget with SedNet was possible, yielding results in the same order of magnitude (20.3 kt a- 1 and 16.2 kt a- 1). Radionuclide sediment tracing, using Be-7, Cs-137 and Pb-210 was applied to differentiate sediment sources for particles < 10μm from hillslope and riverbank erosion and showed that riverbank erosion generates 74.5\% of the suspended sediment load, whereas surface erosion contributes 21.7\% and gully erosion only 3.8\%. The contribution of the single subcatchments of the Kharaa to the suspended sediment load was assessed based on their variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb). These variations were used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The contributions of the individual sub-catchment varied from 6.4\% to 36.2\%, generally showing higher contributions from the sub-catchments in the middle, rather than the upstream portions of the study area. The results indicate that river bank erosion generated by existing grazing practices of livestock is the main cause for elevated fine sediment input. Actions towards the protection of the headwaters and the stabilization of the river banks within the middle reaches were identified as the highest priority. Deforestation and by lodging and forest fires should be prevented to avoid increased hillslope erosion in the mountainous areas. Mining activities are of minor importance for the overall catchment sediment load but can constitute locally important point sources for particular heavy metals in the fluvial system.}, language = {en} }