@article{SurminskiThieken2017, author = {Surminski, Swenja and Thieken, Annegret}, title = {Promoting flood risk reduction}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000587}, pages = {979 -- 1001}, year = {2017}, abstract = {Improving society's ability to prepare for, respond to and recover from flooding requires integrated, anticipatory flood risk management (FRM). However, most countries still focus their efforts on responding to flooding events if and when they occur rather than addressing their current and future vulnerability to flooding. Flood insurance is one mechanism that could promote a more ex ante approach to risk by supporting risk reduction activities. This paper uses an adapted version of Easton's System Theory to investigate the role of insurance for FRM in Germany and England. We introduce an anticipatory FRM framework, which allows flood insurance to be considered as part of a broader policy field. We analyze if and how flood insurance can catalyze a change toward a more anticipatory approach to FRM. In particular we consider insurance's role in influencing five key components of anticipatory FRM: risk knowledge, prevention through better planning, property\&\#8208;level protection measures, structural protection and preparedness (for response). We find that in both countries FRM is still a reactive, event\&\#8208;driven process, while anticipatory FRM remains underdeveloped. Collaboration between insurers and FRM decision\&\#8208;makers has already been successful, for example in improving risk knowledge and awareness, while in other areas insurance acts as a disincentive for more risk reduction action. In both countries there is evidence that insurance can play a significant role in encouraging anticipatory FRM, but this remains underutilized. Effective collaboration between insurers and government should not be seen as a cost, but as an investment to secure future insurability through flood resilience.}, language = {en} } @misc{SpekkersRoezerThiekenetal.2017, author = {Spekkers, Matthieu and R{\"o}zer, Viktor and Thieken, Annegret and ten Veldhuis, Marie-Claire and Kreibich, Heidi}, title = {A comparative survey of the impacts of extreme rainfall in two international case studies}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {640}, issn = {1866-8372}, doi = {10.25932/publishup-41843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418432}, pages = {1337 -- 1355}, year = {2017}, abstract = {Flooding is assessed as the most important natural hazard in Europe, causing thousands of deaths, affecting millions of people and accounting for large economic losses in the past decade. Little is known about the damage processes associated with extreme rainfall in cities, due to a lack of accurate, comparable and consistent damage data. The objective of this study is to investigate the impacts of extreme rainfall on residential buildings and how affected households coped with these impacts in terms of precautionary and emergency actions. Analyses are based on a unique dataset of damage characteristics and a wide range of potential damage explaining variables at the household level, collected through computer-aided telephone interviews (CATI) and an online survey. Exploratory data analyses based on a total of 859 completed questionnaires in the cities of Munster (Germany) and Amsterdam (the Netherlands) revealed that the uptake of emergency measures is related to characteristics of the hazardous event. In case of high water levels, more efforts are made to reduce damage, while emergency response that aims to prevent damage is less likely to be effective. The difference in magnitude of the events in Munster and Amsterdam, in terms of rainfall intensity and water depth, is probably also the most important cause for the differences between the cities in terms of the suffered financial losses. Factors that significantly contributed to damage in at least one of the case studies are water contamination, the presence of a basement in the building and people's awareness of the upcoming event. Moreover, this study confirms conclusions by previous studies that people's experience with damaging events positively correlates with precautionary behaviour. For improving future damage data acquisition, we recommend the inclusion of cell phones in a CATI survey to avoid biased sampling towards certain age groups.}, language = {en} }