@article{CharpinetBrassardFontaineetal.2019, author = {Charpinet, St{\´e}phane and Brassard, P. and Fontaine, G. and Van Grootel, Valerie and Zong, Weika and Giammichele, N. and Heber, Ulrich and Bogn{\´a}r, Zs{\´o}fia and Geier, Stephan and Green, Elizabeth M. and Hermes, J. J. and Kilkenny, D. and Ostensen, R. H. and Pelisoli, Ingrid Domingos and Silvotti, R. and Telting, J. H. and Vuckovic, Maja and Worters, H. L. and Baran, Andrzej S. and Bell, Keaton J. and Bradley, Paul A. and Debes, J. H. and Kawaler, S. D. and Kolaczek-Szymanski, P. and Murphy, S. J. and Pigulski, A. and Sodor, A. and Uzundag, Murat and Handberg, R. and Kjeldsen, H. and Ricker, G. R. and Vanderspek, R. K.}, title = {TESS first look at evolved compact pulsators Discovery and asteroseismic probing of the g-mode hot B subdwarf pulsator EC 21494-7018}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201935395}, pages = {23}, year = {2019}, abstract = {Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g-mode hot B subdwarf (sdB) pulsator, EC 21494-7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494-7018 is a sdB pulsator counting up to 20 frequencies associated with independent g-modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 +/- 0.009x2006;M-circle dot) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (greater than or similar to 2;M-circle dot) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 +/- 0.0010;M-circle dot), radius (0.1694 +/- 0.0081;R-circle dot), and luminosity (8.2 +/- 1.1;L-circle dot). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494-7018 has burnt similar to 43\% (in mass) of its central helium and possesses a relatively large mixed core (M-core;=;0.198 +/- 0.010;M-circle dot), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X(O)(core) = 0.16(-0.05)(+0.13)X(O)core=0.16-0.05+0.13\$ X(mathrm{O})_{mathrm{core}}=0.16_{-0.05}<^>{+0.13} \$) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain C-12(alpha,;gamma)O-16 nuclear reaction rate.}, language = {en} } @article{BoehmHolschneiderLignieresetal.2015, author = {Boehm, Thorsten and Holschneider, Matthias and Lignieres, Frederic and Petit, Pascal and Rainer, Monica and Paletou, Francois and Wade, Gregg and Alecian, Evelyne and Carfantan, Herve and Blazere, Aurore and Mirouh, Giovanni M.}, title = {Discovery of starspots on Vega First spectroscopic detection of surface structures on a normal A-type star}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201425425}, pages = {12}, year = {2015}, abstract = {Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims. The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods. Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895 6270 angstrom. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a T-eff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results. We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes Delta F/Fc similar to 5 x 10(-4). A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions. This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars.}, language = {en} }